ATTACHMENT II FOR THE FINAL REPORT 7N-59020,

REPORT ON PHASE II

C.

DESIGN DEFINITION OF THE PROOF-OF-CONCEPT MODEL FOR THE LTA HIGH ALTITUDE POWERED PLATFORM (HAPP)

NASA CONTRACT NO NAS 6-3131

PREPARED FOR:

NASA GODDARD SPACE FLIGHT CENTER WALLOPS SPACE FLIGHT CENTER WALLOPS ISLAND VA 23337

PREPARED BY:

ILC DOVER
P.O. BOX 266
FREDERICA, DE 19946

(NASA-CR-168350-Vc1-3) DESIGN DEFINITION OF THE PROOF-OF-CCNCEPT MODEL FCR THE LTA HIGH ALTITUDE POWEREL FLATFORM (HAPF). VOLUME 3: FEPORT ON PHASE 2 Final Report (ILC Dover) 112 p

Unclas 00/18 42922

REPORT ON PHASE II

DESIGN DEFINITION OF THE PROOF-OF-CONCEPT MODEL FOR THE LTA HIGH ALTITUDE POWERED PLATFORM (HAPP)

NASA CONTRACT NO. NAS6-3131

PREPARED FOR:

NASA, WALLOPS FLIGHT CENTER GODDARD SPACE FLIGHT CENTER WALLOPS ISLAND, VA 23337

PREPARED BY:

4

KARL STEFAN PROJECT ENGINEER

ILC DOVER

APPROVED BY:

RALPH W. WEIS, JR. MANAGER, INFLATABLE PRODUCTS AIR APPLICATIONS

ILC DOVER

TABLE OF CONTENTS

				REPORT	ON	PHA	SE	I	Ι												PAGE
1.0	INTRO	DUCTION						•	•	•	•			•	•	•	•		•	•	1
2.0	OPERA	ATIONAL	REQUIREME	NT .						•	•			•	•	•	•	•	•	•	3
3.0	SYSTI	EM SELEC	TION .				•	•	•	•	•			•	•	•	•	•	•	•	7
	3.1	SCALING	STUDY	• • •			•	•		•	•		•	•	•	•	•	•	•	•	7
	3.2	WEIGHT	AND BALAN	CE STU	DY	• , •		•		•	•	•		•	•	•	•	•	•	•	14
4.0	SYST	EM DESCE	RIPTION						•	•	•	•		•		•	•	•	•		16
	4.1	SUB-SYS	STEMS				•	•	•		•	•		•	•	•	•	•	•	•	16
		4.1.1	HULL STRU	CTURE	•					•	•	•		•	•	•	•	•	•	•	16
		4.1.2	PROPULSIO	ON SYSI	EM			•		•		•			•	•	•	•	•		16
		4.1.3	GAS PRESS	SURE SY	STE	1.		•	•		•	•		•	•	•	•		•	•	18
		4.1.4	ELECTRICA	AL SYS	rem				•	•		•		•	•	•	•	•	•	•	22
		4.1.5	FLIGHT C	ONTROL	SYS'	ΓEM	Ι.	•		•		•			•	•	•		•	•	23
			4.1.5.1	FUNCT	IONS	•					•	•	•		•	•	•	•		•	.23
			4.1.5.2	LOGIC	REQ	UIR	EM	EN'	Г	•	•		•		•	•	•		•	•	24
			4.1.5.3	SENSO	RS		-		•	•		•	•		•		•	•	•	•	26
			4.1.5.4	PILOT	DIS	PL#	¥Υ		•			•		• •		•	•	•	•	•	27
			4.1.5.5	CONTR	OLS		•		•		•		•	• •		•	•	•	•	•	28
		4.1.6	PAYLOAD						•			•	•	•	•		•	•	•	•	29
	4.2	GROUNI	COMPONEN	rs .				. .			•	•		•	•			•	•	•	. 29
5.0) FAB	RICATIO	N PROCEDUR	RES .			•	•				•	•	•	•		•	•		. ,	. 30
	5.1	COMPO	NENTS MANU	JFACTUE	RING	•	•			. •		•	•		•		•	•	. •	, ,	. 30
		5.1.1	HULL SY	STEM .				•			•		•	•	•					. (. 30
		5.1.2	PROPULS	ION SY	STEM	•			• •		•	•		•	•	• (•	. 3
		5.1.3	CONTROL	SYSTE	м.		•		₽"		•			•					•	•	. 3
		E 1 /	CROTIND	HANDI.T	NG .																. 3

1.0 INTRODUCTION

This report presents results of Phase II of a feasibility study for a High Altitude Powered Platform (HAPP) performed under Contract No. NAS6-3131 with the National Aeronautics and Space Administration, Wallops Flight Center, Goddard Space Flight Center, Wallops Island, VA.

The objective of Phase II, paraphrased from the Statement of Work, was to develop the design definition for a proof-of-concept model of the HAPP airship as conceived in Phase I. This scaled proof-of-concept model is representative of the final HAPP design of Phase I except that it is powered by a self contained power system and not by a microwave link. The proof-of-concept model, hereafter called the "Demonstrator" is designed to verify the HAPP vehicle concept as well as its operational feasibility, but will not totally address the final design mission requirements.

The design objectives for the Demonstrator are more specifically outlined in correspondence* as follows. The scale model will serve to demonstrate the major program objectives and uncertainties by demonstrating system erection, launch, ascent to some reasonable altitude (probably on the order of 50K ft), descent, and recovery. The efforts during this phase included scaling studies to determine the

^{*}ILC Dover letter to Harvey Needleman, NASA Wallops Flight Center dated August 7, 1982.

optimum model size, and operating scenario to most accurately demonstrate full-scale vehicle objectives. Aerostat configurations, ballonet control, materials, power system specification, control systems, guidance system, launch and recovery procedures were addressed in this effort.

The model goal is maximum simulation of full scale components and characteristics.

2.0 OPERATIONAL REQUIREMENT

The operations for the demonstrator vehicle have been conceived as consisting of two flight programs. The first flight program will primarily be proof of the structural and physical handling characteristics of the ship. The flight or flights in this program will explore and develop the practical techniques for ground handling and launching as well as the ship recovery. The flight itself must go to an altitude high enough to demonstrate the practicality of the ballonet concept and the ability to physically trim and control the airship during cruise and descent for landing. In the descent phase it will be especially important to demonstrate that the mixing of air with the helium is sufficiently uniform to retain trim control. The scale model size for an adequate demonstration of these characteristics must be such that it can ascend to an altitude where density difference requires that the ballonet volume be a major portion of the ship, so that the practical aspects of the main ballonet diaphragm operating in conjunction with the helium compartment and the trim ballonets is demonstrated. The ship must also be of sufficient physical dimensions that ground handling equipment, forces, and wind effects will be representative of the problems associated with handling a large smooth-skinned airship.

The second part of the flight program will be aimed at the collection of aerodynamic and performance data for the airship. To this end, after the first flight program is completed, the ship will be instrumented for the collection of the aerodynamic and performance data.

The flight program will then provide data for verifying the analytical basis and design parameters for the ship and providing information for changes where needed. To this end the most essential parameter to be simulated in the demonstrator is the Reynolds number of the full scale HAPP vehicle in its operational environment. Further the structural features as they affect the aerodynamics and performance must be so that the operational results either verify the actual physical design, or alternately verify the analytical procedure to provide confidence in applying the procedure to the full-scale vehicle.

The demonstrator flight capabilities to meet the above requirements was established as follows:

- 1. Launch and recover in surface winds up to 10 knots.
- 2. Winds aloft profile not to exceed the Washington DC summer 84% profile (Figure 2-1).
- 3. Ascend at 150 meters per minute.
- 4. After remote-power ascent, the ship will motor back to station at 55 knots (Threshold power) air speed. It will stay on station for eight hours of daytime and nighttime maneuvering at 55 knots.
- 5. The ship will then motor away from station to proper position for commencing descent.
- 6. Descent will be powered and controlled at threshold power to arrive at the landing site.
- 7. Descent would be interrupted at the appropriate altitude for forty minutes of flight at maximum Reynolds number.

FIGURE 2-1

- 8. Eight hours of fuel at threshold power for landing would be provided.
- 9. Four hours reserve fuel at maximum power would be provided.

The maximum Reynolds number to be duplicated is 36.9 million. This is the Reynolds number for the full scale HAPP vehicle, length 123.3 M at 20 km and 93 Kts.

3.0 SYSTEM SELECTION

3.1 SCALING STUDY

The HAPP parametric computer program as reported in Phase I was adapted for the HAPP demonstrator scaling studies. Changes were made to comply with the flight profile outlined in section 2, above, and to include Reynold's number evaluations. A copy of the program is included in Appendix A. A list of input data is given in Table 3-1 and a sample data printout from the program is given in Table 3-2.

With the use of this program, the chart of Figure 3-1 was developed to facilitate the decision with regard to demonstrator size and operating altitude. A basic assumption for this study was the engine power of 56 kilowatts as discussed in Section 4.1.2 Propulsion Systems. With reference to Figure 3-1, a calculation of demonstrator size and performance parameters with the 56 kilowatt power plant was made for each altitude from 13 to 21 kilometers altitude. The airship volume for each altitude along with the airship airspeed at maximum power and the 84 percentile wind velocity is shown for each altitude. The downward pointing arrow from the balloon at each altitude terminates at the altitude to which the airship must descend in order to duplicate the maximum Reynold's number of 36.9 million which the full scale HAPP may achieve. At the termination of each of these arrows the airship velocity at full power is listed, which also corresponds to the 36.9M maximum Reynold's number for the full scale HAPP. Under it is listed the sea level air speed that is achievable with this power for purposes of landing maneuvers.

TABLE 3-1

INPUTS TO HAPP DEMO 26 OCT 82 COMPUTER PROGRAM

SYMBOL	ITEM	INPUT
P(), TE(), R() E(1) E(2)	AMBIENT PRESSURE TEMPERATURE DENSITY EFFICIENCY, PROPELLER, E(1) EFFICIENCY, GEARBOX, E(3)	U.S. STANDARD ATMOSPHERE 1962 0.90 0.95
WC(1) WC(2) WC(3) WC(4) WC(7)	WEIGHT COEFFICIENT, PROPELLER WEIGHT COEFFICIENT, SHAFT WEIGHT COEFFICIENT, GEARBOX PRIMARY ENGINE (RECIP) GENERATOR	2.1 Kg/Kw 0.0119 Kg/Kw M) 0.43 Kg/Kw 4.2 Kg/Kw 1.1 Kg/Kw
UK(1) U(ZT) RA RH	AIRSPEED, THRESHOLD WINDS ALOFT R-AIR R-HELIUM	55 Kt WASH. D.C. SUMMER 84% PROFILE 287.053 J(KG °R) 2077.23 J(KG °R)
CP CP(1)	DYNAMIC LIFT FACTOR DYNAMIC LIFT FACTOR	1.2 1.0
SH SC	SUPERHEAT SUPERCOOL	16.7 °K -17.2 °K
VO DC CD	AIRSHIP VOLUME DESCENT DRAG COEFFICIENT CRUISE DRAG COEFFICIENT, SOFT FINS HARD FINS	10550 M ³ 0.028 0.018 0.016
RD RC ALT PUR	RATE OF DESCENT RATE OF CLIMB CRUISE ALTITUDE HELIUM PURITY	150 m/min 150 m/min 15000 M 0.95
LH(1) LH(2)	FUEL UNIT WEIGHT FUEL TANK AND SUPPORT UNIT WEIGHT	0.19 Kg/KwHr 0.022 Kg/KwHr
K(9) K(8) K1(4)	PAYLOAD POWER REQUIREMENT AVIONICS POWER REQUIREMENT PRIMARY ENGINE POWER OUT	1.0 Kw 1.13 Kw 56 Kw
B(9) B(9) B(13)	PAYLOAD WEIGHT AVIONICS WEIGHT BALLAST WEIGHT	100 Kg 117.3 Kg ENGINE WEIGHT
FS	SAFETY FACTOR, TEXTILE STRUCTURES	5

TABLE 3-1 (cont)

INPUTS TO HAPP DEMO 26 OCT 82 COMPUTER PROGRAM

SYMBOL	ITEM	INPUT
MHW FFW RFW BFW	HULL FABRIC MINIMUM UNIT WEIGHT FIN FABRIC UNIT WEIGHT RIB FABRIC UNIT WEIGHT BALLONET FABRIC UNIT WEIGHT	0.11867 Kg/M ² 0.11867 Kg/M ² 0.07 Kg/M ² 0.085 Kg/M ²
T(4) BV(1) SL	TRIM BALLONETS VOLUME AS PORPORTION OF AIRSHIP VOLUME BALLONET VOLUME AT MAXIMUM SUPER- HEAT SHAFT LENGTH	0.05 0 10 M

TABLE 3-2

```
HHPPDEMO 250CT82 BASELINE
23AUGB2
       DOLPHIN SOFT FINS
                                                                  WEUN PSWT FUEL PLD
KG KG KG KG
         VÜL
                                          LIMIT
                                                          PROP
                    ALT
                              THRISH.
                     KM
                               KW
                                              ΚW
                                                           KW
                                                                                                                                ٨G
        10550 15 23.290 56 45.963 692.00 498.00 149.00 48% 35% 9%
                                                                                                                  100
                                                                                                                               235.2
                                                               SUPERCOOL = -17.2 K
PROF CD = .0187681845
DAY PRESS (CM H20) = 12.273
NITE PRESS= 2.5
       SUPER HEAT = 18.7 K
      CD = .018
SAFTEY FACTOR = 5
UNIT FAB WT=.11867 KG/M2
---WEIGHTS KGS:--
      TAPE WT = 27.1205152
FIN SYS = 55.1271831
CONE WT = 47
VALVE WT = 3.22350151
                                                               HULL = 339.00644
BALONT SYS = 206.590892
BLOWER = 13.9036066
      PROPELLER = 96.5223
GEAR BOX = 22.876
RECTENNA = 0
AUXE ENG = 0
AVIONICS = 117.3
                                                               SHAFT = 6.3308
FRIME MOTOR = 235.2
TRANS. WIRE = 0
GENNERATOR = 2.343
TANKS = 17.3103388
WATER RECOVERY=0
      RECTENNA AREA =0
MICROWAVE BEAM KW/M2= 0
LIFT = 1074.48424 KGS
VELOCITIES, KTS
                                                               ANGLE OF INCIDENCE LIMIT=0
                                                            WEIGHT = 1674.55296 KGS
      LIMIT=73.3835826 THRESHOLD=55

AUX DESIGN=0 CURE AVE>THRES=0

VOLUME=10550 M3. DIAMETER =19.43 M LENGTH WITH 5% CUT=63.33 M

DEMONSTRATOR VOLUME= 10550 CURIC METERS ----> = 372569 CURIC FEET
```

î.F

With the use of this program the chart of Figure 3-1 was developed to facilitate the decision with regard to demonstrator size and operating altitude. A basic assumption for this study was the engine power of 56 kilowatts as discussed in section 4.1.2 Propulsion Systems. With reference to Figure 3-1, a calculation of demonstrator size and performance parameters with the 56 kilowatt power plant was made for each altitude from 13 to 21 kilometers altitude. The airship volume for each altitude along with the airship airspeed at max power and the 84 percentile wind velocity is shown for each altitude. The downward pointing arrow from the balloon at each altitude terminates at the altitude to which the airship must descend in order to duplicate the maximum Reynold's number of 36.9 million which the full scale HAPP may achieve. At the termination of each of these arrows the airship velocity at full power is listed which also corresponds to the 36.9M maximum Reynold's number for the full scale HAPP. Under it is listed the sea level air speed that is achievable with this power for purposes of landing maneuvers.

Ballonet air volume at sea level is a function of the altitude to which the ship will ascend. It is 78% of the total ship volume for a design altitude of 13km and increased to 93% for flight at 20 km where the full-scale HAPP will fly. It is considered that any flight design altitude from 13 to 20 Km sets a major portion of the airship into ballonet volume and would adequately demonstrate the ballonet concept.

FIGURE 3-1

Ballonet air volume at sea level is a function of the altitude to which the ship will ascend. It is 78% of the total ship volume for a design altitude of 13 km and increased to 93% for flight at 20 km where the full-scale HAPP will fly. It is considered that any flight design altitude from 13 to 20 km sets a major portion of the airship into ballonet volume and would adequately demonstrate the ballonet concept.

The probability of atmospheric turbulence and/or high winds is an important consideration for selection of the demonstrator flight altitude. The wind must be low enough at cruise altitude to permit execution of a maneuvering test program without being blown far off station, and the atmosphere must be non-turbulent to avoid disturbance to laminar flow tests. For these reasons 15 km appears as a minimum demonstrator design altitude. The higher altitudes require increased volumes and vehicle manufacturing costs. In consideration of these factors, an altitude of 15 kilometers, which is safely above the tropopause, has been selected for the demonstrator design altitude. This results in a ship of 10,500 cubic meters which with 56 kilowatts of power will fly at 74 knots at 15 km altitude where the 84 percentile wind is 44 knots. To duplicate the 36.8 million Reynold's number, the ship would descend to 14 kilometers where it could fly at 70 knots. On descent to sea level, it could maneuver at 34 knots for its landing operations. Table 3-2 presents the detailed computer printout for this configuration.

3.2 WEIGHT AND BALANCE STUDY

As in the Phase I airship concept, the stern propulsion does penalize the system with undesirable weight in the tail area requiring careful disposition of other weights as far forward as possible, and also the addition of ballast forward to give a balanced situation. In the demonstrator, the fuel is placed at the center of buoyancy in order to avoid the complication of a water recovery system (as required for the full scale HAPP). The disposition of weights in the demonstrator is presented in Table 3-3. In order to achieve the balanced condition, two rather drastic steps were taken. One is foreshortening of the tail from the idealized dolphin shape by 5% and secondly, placing the engine 10m forward of the propeller.

Similar measures were also taken on the full-scale HAPP so the demonstrator will in this respect simulate the full-scale vehicle and possible problems that may attend these measures.

TABLE 3-3

HAPP DEMONSTRATOR WEIGHT & BALANCE

REF: DISK "HAPP DEMOWTB 22 OCT 82" AND DRAWING SK 82-1537

CENTER OF BUOYANCY AT 30.53 m FROM NOSE ON CENTERLINE

CENTER OF GRAVITY LOCATION

LONGITUDINAL, 30.56 m FROM NOSE VERTICAL, BELOW CENTERLINE AT LAUNCH 2.08 m

CRUISE 3.38 m LANDING 2.36 m

WEIGHT DISTRIBUTION

WEIGHT DISTRIBUTION									
NO.	ITEM	LONGIT		VERTICAL					
	· -	WEIGHT, KG	STATION, M	WEIGHT, KG	BELOW CL				
0	BLOWER	13.9	52.5	13.9	0				
1 1	PROPELLER	96.52	62.3	96.5	Ö				
2	SHAFT	6.33	58.14	6.3	0				
3	GEARBOX	22.88	53.1	22.9	0 -				
4	PRI MOTOR	235.2	52.5	235.2	0				
2 3 4 5 6 7 8 9	RECTENNA	0	0	0	-				
6	AUX ENGINE	0	_0	0	-				
7	GENERATOR	2.34	52.5	2.34	0 - 7				
8	AVIONICS	117.3	6	117.3	- <u>7</u>				
	PAYLOAD	100	6 6 0	100	- 7				
10 11	WIRE CONE RINGS	0 47	52	0 47	0				
12	H20 RECOVERY		. 52	0 0	U				
13	BALLAST	235.2	6	235.2	-7				
14	FINS	55.1	55.9	233.2	-/				
15	FUEL	149	30.5	149	-11.5				
16	TANKS&STR	17.2	30.5	17.3	-11.5				
17	HULL&BALS	572.7	29.62	_					
18	VALVES	3.2	30.53	3.2	0				
19	0	0	0	0					
20	CENTER OF								
		1673.9	30.53	1673.9	0_				
21	HE CEMPT.			58.3	+8.5				
22	2 TRIM BALLONETS		*	26.8	+4.5				
23	MAIN BAL-			121	+8 to -10				
23	LONET DISC			141	40 M -10				
24	HULL&TAPES			365.5	0				
25	TOP FIN			18.3	+7.5				
26	2 LOWER			36.7	-3.5				
	FINS								
		,							

4.0 SYSTEM DESCRIPTION

The demonstrator is a one-half linear scale model (.52 to be exact) of the full-scale HAPP. The shape is proportioned down in a linear fashion and in-so-far as possible, the components simulate the full-scale vehicle. The airship assembly is illustrated in ILC drawing SK82-1537 (Enclosure 2-1).

4.1 SUB-SYSTEMS

For discussion purposes, the ship is divided into the following subsystems: hull structure, propulsion system, gas pressure system, electrical system, flight control system, guidance and information system, and payload.

4.1.1 Hull Structure

Hull structure consists of the basic envelope of fabric and seams, the fins, the main ballonet, the trim ballonets, the helium compartment and the tail compartment. The structure and materials of all of these hull components duplicates (except for size) that of the full-scale ship. The envelope skin material is specifically the lightest weight hull fabric that is specified for the full-scale ship in the Phase I report Section 8.2.

4.1.2 <u>Propulsion System</u>

The Propulsion System consists of the engine, drive shaft, propeller hub and the propeller. The main propulsion engine for the demonstrator is intended to be of the same type and construction as the auxiliary engine for the full-scale vehicle. This engine is conceptually

a four-cylinder aluminum block reciprocating engine with a turbo-charger and liquid cooling. A report on a brief investigation into engine possibilities is presented in Appendix B. As a result of this study, the engine power selected is 56 kilowatts (75 horsepower) which would be available by modification of an existing engine block. An existing engine would be selected to minimize development expense. A two-step turbo-charger with intercoolers would also be required and a radiator for disposition of engine heat at the 15 kilometer altitude would be required. The sizing parameters selected which appear to comply with current technology is 0.88 kilograms per kilowatt for the turbo-charger, 1.11 kilograms per kilowatt for the engine block assembly, and 2.21 kilograms per kilowatt for the cooling system, including liquid, radiator, and intercooling. This gives 4.20 Kg/kw for the engine system.

As discussed under weight and balance, it is necessary to carry the engine in a forward position for balance purposes and a 10 meter long shaft is needed to carry the engine torque to the propeller assembly. The shaft weight is carried parametrically in the program as a thin walled aluminum tube.

The propeller would be a 3-bladed kevlar composite propeller developed with technology similar to that used in existing composite propellers and wind turbines as reported in descriptive material by T.M. Development Company in Appendix C. The propeller diameter would be 10.4 meters with 3-bladed construction and weigh 96.5 kilograms with its hub. The propeller hub would provide for full-pitch control of

the propeller blades including reverse pitch for landing purposes. The propeller is to provide a vectored thrust for propulsion and steering of the vehicle, therefore, the propeller hub will be of a gimbled construction to permit vectoring the propeller up to 22½° from the longitudinal centerline in any direction. The propeller hub mechanically would be similar to the mounting mechanism on front—wheel-drive automobiles, except gimballing would be required in two planes. A conceptual sketch of such a mechanism is shown in Figure 4-1.

4.1.3 Gas Pressure System

The gas pressure system is the means whereby the hull of the ship is pressurized to maintain its shape. The entire hull plus the fins is carried at a positive gauge pressure. The schematic of the system is shown in Figure 4-2. (SK82-1538) The various compartments within the hull of the ship which must be pressurized are the air chamber which is the space in the hull beneath the main ballonet diaphragm, the helium compartment which is the semi-cylindrical tube attached to the top center of the hull to contain the initial charge of helium, the trim ballonets, one located forward and one aft, which are inflated according to the pitch trim requirement of the ship, the tail section consisting of the fins and the aft ten meters of the hull, and finally the utility compartment canopy. As shown in the schematic, the air is supplied from the main blower through a plenum chamber to the air chamber, the helium chamber, the trim ballonets, and the tail section. The utility canopy is fitted with its own

PROPELLER GIMBAL ASSEMBLY

FIGURE 4-1

7.5 7.5

· ·

. ...

. .

1 5

.

1 .

FIGURE 4-2, HAPP DEMONSTRATOR AIRSHIP GAS PRESSURE SYSTEM

blower which takes air from the main air chamber into the utility area to maintain it at a pressure slightly above the air chamber pressure. During periods of high demand, the tail section with fins is supplied with air from the main blower through the plenum chamber. During a steady-state flight condition, a small blower provides the air required to compensate for minor leaks and thus avoid the use of the main blower. All the compartments are fitted with vent valves by which excess air or helium may be vented to the atmosphere. Drain tubes are provided in the main ballonet air chamber and in the trim ballonets to provide for complete scavenging of air from these compartments when they are in collapsed condition. When the ship is in the launch condition, air in the main air chamber under the main diaphragm would fill the ship to about 84% full of air, and the tail section would be full of air. The remainder of the ship volume would be occupied by helium in the helium compartment. During ascent, the air chamber vent valves would be activated by pressure sensors to maintain the hull at a programmed pressure above ambient for structure purposes. In the troposheric region, where atmospheric turbulence may be encountered, hull pressure would be maintained at about 12 centimeters of water. When the ship has reached cruise altitude, programmed operation of the blower and chamber vent valves will allow pressure to vary from 2.5 cm. of water at night to 12.3 cm. of water in the day time. The trim ballonets would be inflated with air differentially as needed to maintain the desired pitch trim. When the trim ballonets are filled or deflated according to trim needs, the main air chamber air controls would be activated as needed to maintain the programmed pressure within the hull.

The tail section consisting of the aft portion of the hull and the fins are all interconnected and inflated with air. This air pressure is maintained at a pressure slightly higher than the helium pressure so that the tail section diaphragm will be slightly stressed to a convex forward shape.

Gas pressure control system will consist of pressure sensors, delivering signals to a micro processor which then issues command to the blower, plenum valves, and vent valves. Pressure sensors would be located on top of the ship, one forward, one mid-ship inside the helium compartment, one mid-ship outside the helium compartment, and one aft. Another set of sensors would be positioned along the bottom of the ship, one forward, one mid-ship, one aft. One pressure sensor would be located in the tail section. A redundant sensor would be provided at all locations.

4.1.4 <u>Electrical System</u>

Electrical power will be required for the flight control system, the guidance and information system, thermal control on some components, the payload, and external lighting. The overall power requirement is estimated at 2.13 kilowatts for which a generator weighing 2.3 kilograms will be required. A battery with 1 kilowatts capacity will provide for 8 hours of airship operation in case of generator failure and 24 hours of avionics operation in case of engine failure.

4.1.5 Flight Control System

The Demonstrator Flight Control System would consist of a manned ground control station with telemetry and command links to sensors and controls on the airship. The ship would be controlled from the ground by a trained operator acting as "pilot". The pilot's task would be a facilitated by information and command processing units on the ground and on the ship.

4.1.5.1 Functions

The following flight functions will be required:

For all flight operations:

Keep hull pressure above minimum.

Maintain pitch trim with ballonets to minimize propeller gimbal angle.

Ascent

Control ascent rate

Travel to Station

Maintain designated altitude

Navigate to station

Station Keeping

Maintain designated altitude

Maintain position

Maneuver for flight tests

Travel from Station

Maintain designated altitude

Navigate to descent position

Descent

Control descent rate
Navigate to landing field

Landing

Make landing approach

4.1.5.2 Logic Requirement

Figure 4-3 outlines the logic for the "maintain altitude" function. Similar logic developments will apply for the following functions:

Maintain Altitude (as given in Figure 1)

Ascent Rate

Trim Control

Navigation

Descent Rate

Landing Approach

Abort

Logic functions would be performed by a "pilot" in a ground control station assisted by microprocessors in the ship and on the ground. The microprocessor would provide an "auto pilot" function for simple maneuvers. Airship data would be provided to the pilot in real time via telemetry and displayed on a console. Position information on a

· .

CRT plot would be from ground based tracking radar supplemented by on-board GPS data.

Sensors which will be required for the Demonstrator are as follows:

4.1.5.3 Sensors

TT	FM	SENSED	
4 1			

Magnetic heading

Ambient pressure, absolute Transducer

Pitch angle Damped Pendulum

Angle of Attack Ion-drift meter (TSI)

Airspeed Ion-drift meter (TSI)

Gimbal vertical angle Angle

Gimbal horizontal angle Angle

Propeller RPM Tachometer

Latitude, Longitude Ground Radar, on-

board Loran

SENSOR

Stabilized compass

Differential Pressures

Helium Compartment to Helium Chamber Transducer

Main Air Chamber to Helium Chamber Transducer

Forward Trim Ballonet to Helium Chamber Transducer

Rear Trim Ballonet to Helium Chamber Transducer

Helium Chamber to Ambient Transducer

Temperature, gas and surfaces (10) Thermistor

Engine RPM and Health Information Tachometer, Vibration,

Temperatures

Fuel quantity and flow rate

Liquid Quantity,

Flow Rate

External Ballast Remaining

Internal Ballast Remaining

On-off Circuit

Liquid Quantity

4.1.5.4 Pilot Display

Sensor information would be telemetered to the ground, processed, and displayed to give the pilot information as follows:

Altitude and Altitude change rate

Pitch angle

Angle of Attack

Gimbal vertical angle

Propeller RPM

Engine RPM

Airspeed

Geographic position plot

Track plot

Heading and Heading rate of change

Ground Speed

Gimbal horizontal angle

Helium Compartment Gage Pressure

Main Air Chamber percent full

Forward Trim Ballonet percent full

Rear Trim Ballonet percent full

Envelope Gage Pressure

Gas Temperature

Fuel Quantity and Fuel Flow

Engine vibration and temperatures
Clutch disengaged, speed 1, speed 2
Propeller Forward or Reverse Pitch

4.1.5.5 Controls

The pilot would have radio command controls as follows:

Gimbal vertical angle, proportional

Gimbal horizontal angle, proportional

Engine speed, proportional

Engine - propeller gear ration, 3 position (2 speeds and disengage)

Propeller pitch, 2 position (forward and reverse)

Helium compartment transfer valve, proportional

Helium compartment vent valve

Forward Trim ballonet inlet valve and vent valve

Rear trim ballonet inlet valve and vent valve

Main air chamber inlet valve and vent valve

Main helium chamber vent valve and air inlet valve

Air blower on-off

External ballast drop, timed

Internal ballast drop, timed

Airship hull minimum pressure would be safeguarded by automatic circuitry to energize the blower and deliver air to the main air chamber if the main helium chamber pressure falls below a preset minimum.

Air ship over pressure is prevented by automatic opening first of air chamber vent valves and next by opening of helium chamber vent valves if preset pressure limits are exceeded.

Tail and fins pressures are automatically maintained by a dedicated small blower. A general description of the system electronics hardware conceived by Motorola Corp. is attached as Appendix D.

4.1.6 Payload

The only payload which has been specified is a small scale microwave link with the ground to simulate in miniature the transmission of power by microwave to the airship. One hundred kilograms of weight has been allocated for a payload.

4.2 GROUND COMPONENTS

The ground components will parallel the full-scale system components in practically all respects. The launching facility will require a hangar with rigging, electronic, and machine shops and a control point such as a control tower, and open field space at least one thousand feet in diameter to accommodate the launch and recovery.

The ship would be mounted on a large dolly for the ground handling activities. Docking rails into the hangar would be desirable to simulate the full-scale vehicle handling. Procedures will be as outlined in the Phase I report.

5.0 FABRICATION PROCEDURES

The fabrication procedures will parallel those employed for the full-scale vehicle and will provide valuable experience for the future full-scale ship. The components of the ship would be manufactured separately at various manufacturers plants and integrated into a final assembly at an appropriate facility such as the Navy airship hangar at Lakehurst.

5.1 COMPONENTS MANUFACTURING

5.1.1 Hull System

The manufacturing procedure for the hull would be the same as for the full-scale system as reported in the Phase I report with the exception that the system could be fabricated in its entirety at a manufacturer's plant because of its smaller size as compared to the full-scale vehicle.

The textile materials of the hull must be custom woven and laminated and will be long lead time items. Several critical properties such as strength, flex life, permeability, laminate adhesion, thermal radiation properties, etc. must be closely controlled.

The hull surface with its requirement for smoothness to retain laminar flow will require unusually close tolerance patterns, cutting and joining of panels. Seams will be butt joints with the bi-modules structural tape inside and then film facing tape outside. Sealing method will be thermal, either by RF or by heat.

The subassemblies would be moved to a hangar for final assembly. Hardware components such as valves and nose mooring would be installed and the ship air inflated for inspection and watering with the tail assembly. With the ship pressurized, final installations of propulsion system, blowers, support structures, avionics and payload would be accomplished.

The textile parts of the hull would be manufactured as three major subassemblies, top, bottom and tail. Each of the subassemblies would include all the textile components such as ballonets, catenaries, reinforcements, etc. Top and bottom would be mated at the manufacturers' plant.

5.1.2 <u>Propulsion System</u>

The propulsion system consisting of the fuel supply, engine, gear box, drive shaft, propeller hub, and propeller would be manufactured at sub-contractors plants and subjected to environmental and operational reliability tests. Since the propulsion system would have many new features as compared to current aircraft hardware, extensive testing of the components and the system would be desirable. As a minimum the engine gear box and propeller hub should be environmentally tested for a thousand hours of operation, and the propeller should be subjected to a thousand hours of spin testing simulating flight conditions.

5.1.3 Control System

The control system will consist largely of proven components so that although system testing will certainly be in order, extensive reliability testing will probably not be needed. The control system, including the information and guidance systems would be manufactured at an electronic manufacturers plant with established manufacturing and quality control procedures.

5.1.4 Ground Handling

Equipment manufacture would require a specialized design and manufacturing team. The ground handling system requirements will be specified by the airship system designer and then assigned to a civil engineering firm for translation into a ground handling system. Standard construction practices would suffice for all portions except the airship mounting dolly, which because of lightweight requirement would best be constructed following aeronautical engineering practices.

5.2 SYSTEM INTEGRATION

The system integration is similar to that illustrated schematically in Phase I Report, Figure 10-1. The airship hull would be taken to the assembly facility such as the Lakehurst hangar. The airship hull would be spread out on the hangar floor and partially inflated with air at which time the nose mooring hardware, the valves, drain tubes, utility compartment components, would be installed in the ship. The ship could then be fully inflated and pressurized with air. Meanwhile the empennage would be assembled consisting of the tail section and the fins. With the engine and propeller shaft all installed,

this assembly would be inflated with a temporary air barrier added at the forward end. The fins would be attached but not inflated at this stage of assembly. The inflated tail section would be supported in an external rigid support jig and would be raised into position and mated with the pressurized main airship hull. After the mating has been accomplished, the temporary tail gas barrier would be removed and the pressurized hull system would structurally support the inflated tail section. If space permits in the hangar, the tail fins would be inflated and pressure tested at this point. The airborn guidance and information system would be installed and detailed system check-out in conjunction with the ground control station accomplished. With the airship mounted on it's dolly and secured to the docking rails, all ground handling system vehicles and hardware would be checked for compatibility and function.

5.2.1 System Inspection and Test

Following component installation and test, the entire system would be tested following the check-list developed during the design phase.

6.0 FLIGHT PROCEDURES

Except as noted below, all flight procedures parallel those for the full scale HAPP as presented in the Phase I report Section 10.0

DEVIATIONS FROM FULL SCALE OPERATIONS/PROCEDURES Rectenna power will not be available for propulsion. Limit pressure for the demonstrator hull is 12.3 cm $\rm H_2O$.

Flight control will be more dependent on pilot manual control, automation will be at a lower level.

7.0 SAFETY AND FLIGHT REGULATIONS

The safety and flight regulation aspects for the system have been addressed in the Phase I report Section 10.8. These factors are entirely paralleled by the demonstrator and the only significant difference which can be foreseen at this time is that FAA clearances at a 15 kilometer altitude may be more restrictive than at the higher HAPP altitude of 20 kilometers. However, since the period of operation for the demonstrator is only a few hours, no serious problem in arranging the clearance is foreseen.

8.0 COST ESTIMATE

The cost estimate is based on 1983 dollars and on the schedule shown in Figure 8-1. Detailed costs are given in Table 8-1, and are summarized below.

	Cost
	(K Dollars)
Program Management	375
Design	1839
Fabrication	2473
Inflation/Checkout	60
Flight Tests	220
Final Report	27
TOTAL	4994

These costs might be reduced if some components were GFE. Some of the more obvious candidates which might come from other government programs are:

Battery or Fuel Cell

Avionics

Sensors

Telemetry - command

TABLE 8-1 DEMONSTRATOR COST ESTIMATE THOUSANDS OF DOLLARS

		Cost
1.0	Prog. Mgmt.	375
2.0	Design 2.1 Material 2.2 Mfg. Tech. 2.3 T/O's 2.4 Hull 2.5 Fin 2.6 Ballonet 2.7 Propulsion 2.8 Avionics 2.9 Misc. Hdwe; Nose 2.10 Pressure Control 2.11 Propeller/Hub/Gimbal 2.12 Flight Procedure 2.13 Ground Handling Equip., Mooring 2.14 System 2.0 TOTALS	73 57 71 33 33 32 427 197 134 132 428 82 63 77 1839
3.0	Fabrication 3.1 Softgoods, Valves, Plenum, Nose 3.2 Ground System (Mooring) 3.3 Propulsion 3.4 Avionics 3.5 Misc. Hdwe. 3.6 Pressure Control 3.7 Propeller Hub 3.8 System 3.0 TOTALS	1129 514 126 376 25 75 125 103
4.0	Inflation/Checkout	60

TABLE 8-1 DEMONSTRATOR COST ESTIMATE THOUSANDS OF DOLLARS

(cont'd)

		Cost
5.0	Flight Tests 5.1 lst Total 5.2 2nd Total	61
	5.2.1 1st Flight 5.2.2 2nd Flight	113 46
	5.0 TOTALS	220
6.0	Reports Final	27
	PROGRAM TOTALS	4994

9.0 CONCLUSIONS AND RECOMMENDATIONS

The conclusion of this report is that a HAPP demonstration vehicle with a volume of 10,500 cubic meters operating with a design altitude of 15 kilometers does fulfill the objectives for a "proof of concept" model. Technical simulation is achieved for the physical and aerodynamic configurations of the full-scale ship. The operations of this one-half full-scale model provides a valuable operational simulation and confidence for the full-scale model. The same conclusion is true for the manufacturing of the model which will demonstrate and de-bug the techniques for the new manufacturing technology of Kevlar fabric and of close tolerance surface smoothness.

The estimated cost for the Demonstrator program including design, manufacture, and flight tests is \$4,994,000. over a time span of 26 months.

9.1 RECOMMENDATIONS

It is recommended that a proof of concept model as defined in this report is an important step in the development of the full-scale HAPP vehicle and the program should be pursued.

APPENDICIES FOR HAPP PHASE II REPORT

APPENDIX	SUBJECT	
Α	COMPUTER PROGRAM FOR PARAMETRIC STUDY	
В	PROPULSION ENGINE SURVEY AND THUNDER ENGINE PROPOSAL	
С	TM DEVELOPMENT CO. LIGHTWEIGHT PROPELLERS	
D	MOTOROLA COMMAND AND TELEMENTRY CONCEPT	

"HAPP PROOF-OF-CONCEPT MODEL PARAMETRIC PROGRAM"

```
JLIST
 REN 1.DEMONSTRATOR, ASCENT PWR OFF, AUX BACK AND AWAY AND DESCENT AT THRESHOLD POWER: 2.PARTIAL SUPEARPRESS FER HIN FAR WT: 3.WI NOS WASHDO SUMMER 84%: 4.ON STATION FUEL 8 HRS AT LIMIT: 4. LIMIT SPEED SET BY 56KW RECIP ENGINE:
 20
80
2971.7

230 VTAB 10

240 HTAB 10

250 BA$ = "280CT82"

260 LIST 250: PRINT: PRINT: TO CHANGE CURRENT DATE *RESET*.

CHANGE, RUN"

270 FOR I = 1 TO 50:X = I 1 2: NEXT:X = C

280 GOTO 350

290 HOME: VTAB 4: HTAB 4: PRINT "IF YOU ARE MAKING CHANGES FROM THE "TO HOME: VTAB 4: HTAB 4: PRINT "IF YOU ARE MAKING CHANGES FROM THE "TO HOME: VTAB 4: HTAB 4: PRINT "IF YOU ARE MAKING CHANGES FROM THE "TO HOME: VTAB 4: HTAB 4: PRINT "IF YOU ARE MAKING CHANGES FROM THE "TO HOME: VTAB 4: HTAB 4: PRINT "IF YOU ARE MAKING CHANGES FROM THE "TO HOME: VTAB 4: HTAB 4: PRINT "IF YOU ARE MAKING CHANGES FROM THE "TO HOME: VTAB 4: HTAB 4: PRINT "IF YOU ARE MAKING CHANGES FROM THE "TO HOME: VTAB 4: HTAB 4: PRINT "IF YOU ARE MAKING CHANGES FROM THE "TO HOME: VTAB 4: HTAB 4: PRINT "IF YOU ARE MAKING CHANGES FROM THE "TO HOME: VTAB 4: HTAB 4: PRINT "IF YOU ARE MAKING CHANGES FROM THE "TO HOME: VTAB 4: HTAB 4: PRINT "IF YOU ARE MAKING CHANGES FROM THE "TO HOME: VTAB 4: HTAB 4: PRINT "IF YOU ARE MAKING CHANGES FROM THE "TO HOME: VTAB 4: HTAB 4: PRINT "IF YOU ARE MAKING CHANGES FROM THE "TO HOME: VTAB 4: HTAB 4: PRINT "IF YOU ARE MAKING CHANGES FROM THE "TO HOME: VTAB 4: HTAB 4: PRINT "IF YOU ARE MAKING CHANGES FROM THE "TO HOME: VTAB 4: HTAB 4: PRINT "IF YOU ARE MAKING CHANGES FROM THE "TO HOME: VTAB 4: HTAB 4: PRINT "IF YOU ARE MAKING CHANGES FROM THE "TO HOME: VTAB 4: HTAB 4: PRINT "TYPE"
                      HTAB 4: PRINT "BASELINE & WOULD LIKE TO HAVE THEM"
HTAB 4: PRINT "NOTED YOU HAVE TWO LINES OF 60 CHAR
HTAB 4: PRINT "EACH TO MAKE YOUR COMMENTS": HTAB 4
  310
320
                                                                                                                                                                                                          "HTAR 4: PRINT "TYPE
                     HIAB 4: PRINT "EACH TO MAKE TOOK COMMENTS": HIAB
RTN FOR NO COMMENT"
PRINT: PRINT "COMMENT #1": INPUT " ";CO$(1): IF
60 THEN PRINT "COMMENT TOO LONG": GOTO 330
PRINT: PRINT "COMMENT #2": INPUT " ";CO$(2): IF
60 THEN PRINT "COMMENT TOO LONG": GOTO 340
HOME: VTAB 5: HTAB 10
INVERSE: PRINT "CONFIGURATION OPTION": NORMAL
PRINT " DOLPHIN; SOFT FINS": PRINT
  330
                                                                                                                                                                                                                                     LEN ( DO$(1)) >
                                                                                                                                                                                                                                      LEN (CD*(2)) >
  340
  350
350 DULERSE : FRIN.
360 INVERSE : FRIN.
370 FRINT " DOLPHIN , __
380 FIG$ = "2"
390 GOTO 420
400 INFUT "CHANGE CONFIG. TO HARD FINS? N "*AS$
410 IF AS$ = "Y" THEN FIG$ = "1"
420 REM **********
70 REM INIT INFUTS
100 FFFIC
SPEED

530 RA = 287.053: REM R-AIR J/KG KELVIN

540 RH = 2077.23: REM R-HELIUM

550 CP = 1.2:CP(1) = 1: REM DYNAMIC LIFT.COEFF.
```

```
SH = 16.7: REM SUPER HEAT NELVIN
SC = -17.21 REM SUPER COBL NELVIN
US = 105501V2 = V0 1 (2 / 3)
CA = 86; REM CLIMB ANGLE DEG
DC = .028; REM CLIMB ANGLE DEG
DC = .028; REM CLIMB DESCENT CD
CC = .018: 1F FIG4 = "1" THEN CD = .016
RD = 150: REM RATE DESCENT NYMIN
RC = 150: REM RATE ASCENT NYMIN
RC = 150: REM PATE ASCENT NYMIN
IF SK4 = "SNIP" THEN 660
ALT = 15000
ZT = ALT / 1000
PUR = .95: REM PURITY
LH(1) = .022: REM KG/KWHR FUEL WT
LH(2) = .022: REM KG/KWHR TANK.011 & SUPPORT WT .011
LH = LH(1) + LH(2): REM KG/KWHR FUEL AND TANK+SUPPORT WT
PROP# = "RECTE ENGINE H2"
N(9) = 1: REM KW PWR P/L
N(8) = 1:13: REM AUTONICS PWR KW
N(4) = 56:R(4) = N1(4) % WC(4): REM PRI ENGINE
N(3) = N1(4) % E(3) - (N(9) + N(8)): N1(1) = N1(3) * E(1)
B(8) = 117.3: REM AUTONICS WT KGS
B(13) = N(4): REM BALLAST IN NOSE FOR BALANCE
HOME: VTAK 12: PRINT "ALTITUDE = "ALT" m"
GOTO 860
INPUT "NEW ALTITUDE ";ALT
ZT = ALT / 1000
INPUT "NEW ALTITUDE ";ALT
ZT = ALT / 1000
INPUT "NEW ALTITUDE ";ALT
ZT = ALT / 1000
INPUT "NEW ALTITUDE ";ALT
ZT = ALT / 1000
INPUT "NEW ALTITUDE ";ALT
ZT = ALT / 1000
INPUT "NEW ALTITUDE ";ALT
ZT = ALT / 1000
INPUT "NEW ALTITUDE ";ALT
ZT = ALT / 1000
INPUT "NEW ALTITUDE ";ALT
ZT = ALT / 1000
INPUT "NEW ALTITUDE ";ALT
ZT = ALT / 1000
INPUT "NEW ALTITUDE ";ALT
ZT = ALT / 1000
INPUT "NEW ALTITUDE ";ALT
ZT = ALT / 1000
INPUT "NEW ALTITUDE ";ALT
ZT = ALT / 1000
INPUT "NEW ALTITUDE ";ALT
ZT = ALT / 1000
INPUT "NEW ALTITUDE ";ALT
ZT = ALT / 1000
INPUT "NEW ALTITUDE ";ALT
ZT = ALT / 1000
INPUT "NEW ALTITUDE ";ALT
ZT = ALT / 1000
INPUT "NEW ALTITUDE ";ALT
ZT = ALT / 1000
INPUT "NEW ALTITUDE ";ALT
ZT = ALT / 1000
INPUT "NEW ALTITUDE ";ALT
ZT = ALT / 1000
INPUT "NEW ALT INPUT "SHAFT LENGTH ESHIP LENGTH LE**(95-80) - 15/N N';AS*
IF AS$ = "Y" THEN GOTO 890
 560
570
590
590
 000
510
520
530
 540
650
 000
 570
680
 690
700
710
 780
790
  800
  810
  820
830
  340
  350
  840
870
                          IF AS$ = "Y" THEN
 880
890
                                                                                                                  GOTO 890
                                                                                                                     DRIVE SHAFT WT COEFFFOR RADIUS 0.25M, AL 6061
                      WC(2) = .0119; REM
   900
                          HOME: VTAB 12: PRINT "DRIVE SHAFT WT COEFF. = "; WC(2) GOTO 960
INPUT "DO YOU WANT TO CHANGE? N "; AS$: IF AS$ = "Y" THEN
 910
920
930
                                                                                                                                                                                                                                                                                                                       GOTO 9
                            50
 940
950
                     GOTO 960
INPUT " NEW DRIVE SHAFT WT COEFF =
PC(2) = 2.5:PD(2) = PC(2) * C3: REM
                                                                                                                                                                                                   "#WD(2)
PC DMH20*PD PASCALS* NITE PR
  960
                   ESS DIFF
FS = 5: REM
970 FS = 5: REM SAFTEY FACTOR
980 MHW = 0.11867: REM MIN HULLFAB WT(3.5 0Z/YD2)
990 FFW = .11867: REM FIN FABRIC WT KG/M†2
1000 RFW = .07: REM RIB FABRIC WT KG.M†2
1010 BFW = .085: REM BALLONET FABRIC WT KG/M†2
1020 T(4) = .05: REM PROP SHIP VOL FOR TRIM BALLONET
1030 BV(1) = 0: REM BALLONET VOL
1040 SHIP$ = "DOLPHIP HARD FINS": IF FIG$ = "2" THEN SOFT FINS"
1050 HOME: VTAB 12
                                                                                      SAFTEY FACTOR
                                                                                                                                                                     IF FIG# = "2" THEN SHIP# = "DOLPHIM
 1050
1060
1080
1080
1090
                               HOME : VTAB 12
FRINT "CLIMB ANGLE = "CA" DEG FWR OFF ASCENT"
                        PRINT "CLIMB ANGLE = "Ch" DeG (W) 0. GOTO 1130
INPUT "DD YOU WANT TO CHANGE (Y/N) N ";AS$
IF AS$ = "Y" THEN 1120
PRINT "P1=ASCENT" TAB( 20)"P2=CRUISE MAX" TAB( 40)"P3=CRUISE PARTIAL"
GOTO 1130
INPUT "NEW CLINB ANGLE = ";CA
HOME : VTAB 12
PRINT "CLIMB CD = "DC
GOTO 1200
INPUT "DD YOU WANT TO CHANGE (Y/N) N ";AS$
IF AS$ = "Y" THEN 1190
GOTO 1200
  1100
 1110
1120
1130
 1140
1150
                             INPUT "NO YOU WANT TO CHANGE (Y/N) N ";AS$
IF AS$ = "Y" THEN 1190
GOTO 1200
INPUT "NEW CLIMB CD = ";DC
HOME : VTAB 12
FRINT "FURITY = "PUR
GOTO 1270
INPUT "NO YOU WANT TO CHANGE (Y/N) N ";AS$
IF AS$ = "Y" THEN 1260
GOTO 1270
GOTO 1270
INFUT "FURITY =";PUR
HOME : VTAB 12
                        RE = (RA * RH) / (PUR * (RA - RH) + RH): REM EFFECTIVE GAS COMS
  1280
```

```
TANT
                                                   PRINT "DRAG COEFF(SHIP)="CD
  1290
                                                  PRINT "DRAG COEFF(SHIP)="CD
GOTO 1350
INPUT "DO YOU WANT TO CHANGE (Y/N) N "#AS#
IF AS# = "Y" THEN GOTO 1340
GOTO 1350
INPUT "NEW COEFF ="#CD
HOME : UTAB 12
GOTO 1420
PRINT "MINIMUM AVE HULL FAB WT="MHW" NG/M2)
INPUT "DO YOU WANT TO CHANGE#(Y/N)N"#AS#
IF AS# = "Y" THEN 1410
GOTO 1420
  1300
 1380
  1390
                                                  GOTO 1420
GOTO 1420
INPUT "NEW MIN AVE HULL FAR WT="#MHW
PRINT "FIN SKIN FAR WT="FFW" KG/M+2"
GOTO 1490
INPUT "NO YOU WANT TO CHANGE (Y/N) N "#AS$
IF AS$ = "Y" THEN GOTO 1470
1400
1410
1420
1430
  1440
                                                  GOTO 1490
INPUT "NEW FIN SKIN WT="#FFW
HOME : VTAB 12
PRINT "RIB FAB WT="#RFW" KG/M12"
 1450
1470
1480
                                            HOME: UTAB 12
PRINT "RIB FAB WT=";RFW" KG/M+2"
GDTD 1780
INPUT "BD YOU WANT TO CHANGE (Y/N) N ";AS$
IF AS$ = "Y" THEN GDTO 1540
GDTD 1560
INPUT "NEW RIB FAB WT=";RFW
HOME: UTAB 12
PRINT "BALNT FAB WT="BFW" KG/M+2"
INPUT "BO YOU WANT TO CHANGE (Y/N) N ";AS$
IF AS$ = "Y" THEN GDTO 1600
GDTO 1610
INPUT "NEW BALNT FAB WT=";BFW
PRINT "BALLONET VOL AT CRUISE ALT = "BV(1)
INPUT "BO YOU WANT TO CHANGE (Y/N) N ";AS$
IF AS$ = "Y" THEN GDTO 1650
GDTO 1660
INPUT "BALLONET VOL = "BV(1)
PRINT "PROP OF SHIP VOL FOR TRIM BALLONET = "T(4)
INPUT "BO YOU WANT TO CHANGE? ";AS$
IF AS$ = "Y" THEN 1700
GDTO 1710
INPUT "BO YOU WANT TO CHANGE? ";AS$
IF AS$ = "Y" THEN 1700
GDTO 1710
INPUT "NEW PROP OF SHIP FOR TRIM BALLONET = ";T(4)
HOME: UTAB 2
HTAB 15: INVERSE: PRINT "WIND OPTIONS": NORMAL
PRINT: PRINT: PRINT "THESHOLD VELOCITY = "UK(1)" KTS": 1NPUT
"WILL THIS CHANGE (Y/N) N ";AS$
IF AS$ = "Y" THEN GOTO 1760
GDTO 1770
GDTO 1770
INPUT "NEW THRESHOLD VELOCITY KTS":UK(1):UM(1) = UK(1) * C?
    1490
  1500
 10100000
115345
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11555
11
  1520
1570
  1580
1570
  1500
 1620
1620
1630
1650
 1650
1670
   1680
   1690
 1700
1710
1720
                                        IF As* = "Y" THEN GOTD 1760

GOTO 1770

INPUT "NEW THRESHOLD VELOCITY, KTS"; UK(1): UM(1) = UK(1) * C2

FRINT: FRINT

HOME: VTAB 12

VTAB 14: FRINT "CALCULATING WIND VALVES"

REM ASCENT & DESCENT WINDS, WASH DC SUMMER, M/S

FOR I = 0 TO 24: ZLT = I * 1000: REM U(I) IS IN M/S

IF ZLT > 0 AND ZLT < = 12000 THEN U(I) = (15 + 0.00472 * (ZLT - 0)) * C2

IF ZLT > 12000 AND ZLT < = 18500 THEN U(I) = (71.6 - 0.00932 * (ZLT - 12000)) * C2

IF ZLT > 18500 THEN U(I) = (11.0 + 0.00209 * (ZLT - 18500)) * C
  1740
 177500
177500
1777800
1777800
1188
  1810
1820
  1830
   1840
                                                  NEXT
FOR
  1850
                                         NEXT
FOR I = 0 TO 24:UU(I) = U(I): NEXT : REM SETS DESCENT WINDS =
ASCENT; M/S
HOME : VTAB 12: PRINT "SUPER HEAT & COOL TEMP = "SH" & "SC" K"
GOTO 1990
INPUT "DO YOU WANT TO CHANGE Y/N N"; AS$
IF AS$ = "Y" THEN GOTO 1920
GOTO 1930
INPUT "NEW HEAT = "; SH: INPUT "NEW COOL = "; SC
HOME : VTAB 12
PRINT "NITE PRESS DIFF = "PC(2)" CM H20": PRINT "SAFTEY FACTOR
"FS
TNPUT "DO YOU WANT TO CHANGE (Y/N) N "; AS$
   1860
  1870
 1880
1890
  1900
1910
1920
1930
1950
1960
1970
                                                  INFUT "DO YOU WANT TO CHANGE (Y/N) N ";AS$
IF_AS$ = "Y" THEN GOTO 1980
```

```
PRINT "DAY PRESS DIFF FOR DAYNITE EQUIL, DM H20="PD:4)
PD = 622.570778:PD# = "FABPRESS": PRINT "DAY PRESS WILL ADJUST T
O PRESSURE FOR MIN FAB WT": PRINT : GOTO 2050: INPUT "DO YOU WAN
T TO CHANGE(Y/N)N":AS#
IF AS# = "Y" THEN PD# = "O": GOTO 2040
GOTO 2050
INPUT "NEW DAY PRESS DIFF, CMH20="*PO(3):PD = PO(3) * C3
HOMF: UTAR 12
  2000
 2010
1+ AS$ = "Y" IHEN PU$ = "O"; GUTU 2040

INPUT "NEW DAY FRESS LIFF, CMH20="$PC(3);PD = PC(5) * C3

HOME : VTAB 12

GOTO 2340

PRINT "F/L WT="K(9)" KGS"
INPUT "DO YOU WANT TO CHANGE (Y/N) N ";AS$

IF AS$ = "Y" THEN GOTO 2110

GOTO 2120

INPUT "F/L WT (KGS) = ";B(9)

HOME : VTAB 12

PRINT "AVIONICS WT="E(8)" KGS"
INPUT "DO YOU WANT TO CHANGE (Y/N) N ";AS$

IF AS$ = "Y" THEN GOTO 2170

GOTO 2180

INPUT "NEW WT=";B(8)

HOME : VTAB 12

PRINT "P/L PWR="K(9)" KW"
INPUT "DO YOU WANT TO CHANGE (Y/N) N ";AS$

IF AS$ = "Y" THEN GOTO 2230

GOTO 2240

INPUT "PWR P/L (KW) = ";KC(9)

HOME : VTAB 12

PRINT "AVIONICS PWR="K(8)" KW"
INPUT "DO YOU WANT TO CHANGE (Y/N) N ";AS$

IF AS$ = "Y" THEN GOTO 2690

INPUT "NEW PWR?";KC(8)

HOME : VTAB 12

PRINT "AVIONICS PWR="K(8)" KW"
INPUT "IO YOU WANT TO CHANGE (Y/N) N ";AS$

IF AS$ = "Y" THEN GOTO 2690

GOTO 2300

INPUT "NEW PWR?";KC(8)

HOME : VTAB 12

PRINT "YOU WANT TO CHANGE (Y/N) N ";AS$

IF AS$ = "Y" THEN GOTO 2520

UM(5) = (K1(1) * 1000 / (CD * .5 * R(ZT) * V2)) † (1 / 3):UK(5) =

REM REITERATION STARTS HERE
FOR I = 1 TO 5:UM(I) = UK(I) * C2: NEXT
FOR I = 1 TO 5: PRINT I" UK(I) * C2: NEXT
FOR I = 1 TO 5: PRINT I" UK(I) * C2: NEXT
FOR I = 1 TO 5: PRINT I" UK(I) * C2: NEXT
FOR I = 1 TO 5: PRINT I" UK(I) * C2: NEXT
FOR I = 1 TO 5: PRINT I" UK(I) * C2: NEXT
FOR I = 1 TO 5: PRINT I" UK(I) * C2: NEXT
FOR I = 1 TO 5: PRINT I" UK(I) * C2: NEXT
FOR I = 1 TO 5: PRINT I" UK(I) * C2: NEXT
FOR I = 1 TO 5: PRINT I" UK(I) * C2: NEXT
FOR I = 1 TO 5: PRINT I" UK(I) * C2: NEXT
FOR I = 1 TO 5: PRINT I" UK(I) * C2: NEXT
FOR I = 1 TO 5: PRINT I" UK(I) * C2: NEXT
FOR I = 1 TO 5: PRINT I" UK(I) * C2: NEXT
FOR I = 1 TO 5: PRINT I" UK(I) * C2: NEXT
FOR I = 1 TO 5: PRINT I" UK(I) * C2: NEXT
FOR I = 1 TO 5: PRINT I" UK(I) * C2: NEXT
FOR I = 1 TO 5: PRINT I" UK(I) * C2: NEXT
FOR I = 1 TO 5: PRINT I" UK(I) * C2: NEXT
FOR I = 1 TO 5: PRINT I" UK(I) * C2: NEXT
FOR I = 1 TO 5: PRINT I" UK(I) * C2: NEXT
FOR I = 1 TO 5: PRINT I" UK(I) * C2: NEXT
FOR I = 1 TO 5: PRINT I" UK(I) * C2: NEXT
FOR I = 1 TO 5: PRINT I" UK
.5 * R(ZT) * V2)) f (1 / 3):UK(5) =
2350
2360
2370
                         REM SIZING ROUTINE
 2380
2390
                          巨巨州 米米米米米米米米米米米米米米
24120
24120
241340
241340
241340
241340
                  ŽÉT
LE:
                     LF = (VR * 6.863) * .95: REM LENGTH, TRUNCATED 5% FOR BALANCE PRINT "VD="VD SA = 5.9388 * V2: REM SFC AREA M2 DERIVED FR 1.5MCF=77820FT2 SL = 10: REM SHAFT LENGTH B(11) = 47: REM SUPPORT RINGS FOR ENGINE AND PROPELLER, NO HARD
2460
2470
 2480
2490
                     CONÉ
ESF =
2510
2520
2530
 2540
  2550
 2566
 2570
                       UFW
                     KTW = HFW * .08: REM TAPE WT KG;4% EACH SIDE M(1) = (P * VO) / (RA * TE): REM MASS DISPL AIR M(2) = ((P + PD) * (VO - BV(1))) / (RE * (TE + SH)): REM
 2580
2590
                                                                                                                                                                                                                                                                          MASS H
  2600
2610 M(3) = ((P + PD) * (BU(1))) / (RA * (TE + SH)); REM
                                                                                                                                                                                                                                                 - DAY MASS AI
                      R IN BALNT
                   D(1) = M(1) - M(2) - M(3); REM DAY STATIC LIFT

NV = (M(2) \times RE \times (TE + SC)) / (P + PD(2)); REM NIGHT VOL

M(5) = ((P + PD(2)) \times (VO - NV)) / (RA \times (TE + SC)); REM
2620
2630
                                                                                                                                                                                                                                    NIGHT VOL HE
   2640
                      ALNT AIR MASS
                                                                                     M(2) - M(5): REM NIGHT STATIC LIFT
 2650 LD(
2660 BV
                     LD(2) = M(1)
                                                                                                       NITE BALLONET VOLUME
                                        VOL - NV: REM
```

```
3000
3000
3000
3000
3000
3000
   3040
3050
3040
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
**********
    REM ASCENT PROFILE
```

```
3290
3300
                           民巨河 宋米米米米米米米米米米米米
GOTO 3470: REM SKIPS POWERED ASCENT
FOR I = 0 TO (ZT): REM POWERED ASCENT
FW = SQR (VX(I) † 2 - (RC / 60) † 2): REM
DT = (1000 / RC) * 60: REM SEC 1000M
S1 = FW - U(I): REM GROUNDSPEED M/S
S = (S1 * DT):ST(1) = S + ST(1): REM BLOWN
NEXT
PRINT
TX = 4' T / TO
 3350
 3360 GOTO
3370 FOR
3380 FW =
                                                                                                                                                                                                                              AIRSPEED AT ALT I
 3390
3400
3410
3420
3430
                                                                                                                                                                                               BLOWOFF
                    TX = ALT / RC / 60: REM HOURS CLIMBING SX = ST(1) * 5.396E - 4

HH = TX * EH: REM NWHR CLIMB REM CONT FR 3360(GOTO 3470)

FOR I = 0 TO ZT: REM FOWER OFF ASCENT DT = (1000 / RC) * 60: REM SEC 1000M S = U(I) * DT:ST(1) = ST(1) + S: REM BL
 3460
3470
3480
      490
 3500
3510
3518
                                                                                                                                                           S: ŘĚM BLOWOFF M
                    NEXT
UJ(1) = UM(1):KK(1) = K4(4): IF UJ(1) = UM(5) THEN KK(1) = K1(4)
: REM FOR AUXBACK TZ AND HS, UM(1):THRESHOLD, UM(5)LIMIT
TZ = ABS (ST(1)) / ((UJ(1) - U(ZT)) * 3600): REM HRS TO AUXBAC
 3520
 3530
3540
3550
3550
3570
                       HS = TZ * KK(1): REM KWHR AUXBACK
TX = ALT / RC / 60: REM TIME TO ALT
IF AS$ < > "CV" THEN 3620
PRINT TAB( 20)"* * * * * ASCENT PROFILE * * * * * *"
PRINT "POWER OFF ASCENT AT "RC" M/MIN; WINDS WASHDO SUMMER 84%"
                           PRINT "TIME TO CLIMB TO "ZT" KM="TX
PRINT "BLOWDFF DISTANCE ="ST(1) / 1000" KM."
PRINT "TIME TO AUXBACK TO STATION ="TZ"HRS. AT THRESHOLD SPD"
PRINT "FUEL USED ASCENT AND AUXBACK ="HS * LH(1)" KG
3580
3590
 3600
3610
3620
3630
                           取巨州 塞米米米米米米米米米米米米米米米米米米米
                            REM ON STATION PROFILE
 3640
3650
                            民巨州 米米米米米米米米米米米米米米米米米
                      REM ON STATION WINDS AND AUX PWR CALC IN LINES 3110 TO 3190
BO = 0: REM KWHR ON STATION
RK = K1(4) * 8: REM KWHR, 4HR RESERVE, 4HR MANEUVER, AT LIMIT F
 3660
3670
                       WR
                          3680
3690
3700
3710
REM ***************************

REM ISCENT FROFILE

REM ****************

IF AS$ = "CV" THEN GOTO 3970

ST = 0

DT = (1000 / RI) * 60: REM SEC PER 1000M

FOR I = (ZT) TO 0 STEP = 1

FOR I = (ZT) TO 0 STEP = 1

OF = SQR (VX(I) † 2 = (RI / 60) † 2): REM HORIZONTAL AIRSPEED AT ALT I

OF = ST * UT

OF = S + ST: REM GROUNDSPEED

OF = S + S + ST: REM AUXAWAY DISTANCE M

NEXT I

OF USE INT 1 = AND HJ = 1

OF USE INT 1 = AND HJ = 1

OF USE INT 1 = AND HJ = 1

OF USE INT 1 = AND HJ = 1

OF USE INT 1 = AND HJ = 1

OF USE INT 1 = AND FRINT "AIRSPEED LESS THAN WIND SPEED AT CRUISE ALTITUDE; GOTO 5710 FOR NEW RUN": STOP

OF USE IN HI=

OF U
 3800
3810
3820
3830
3840
 3848
3860
3870
3878
3880
 389ŏ
3900
                       WHR, ASCENT + AUXBACK + AUXAWAY + DESCENT + BLOWER + LANDING + RESERVE + ONSTAT
```

* ... »

```
ION
 3920 FUL = HT * LH(1): REM MISSION FUEL NG
5930 MTA = HT * LH(2): REM TANK & STRUCTURE NG
3940 EI = EJ + MTA
3950 DSF = (HD + DB + HL + HJ) * LH(1): REM FUEL FOR DESCENT OPS INC.
L 8HR LANDING
3960 JF AS# < > "CV" THEN 4100
                        L SHR LANDING

IF AS$ < > "CV" THEN 4100

PRINT TAB( 10)"* * * * * * ISCENT PROFILE, AUXAWAY AND DECENT AT THRESHOLD * * * * * * "

PRINT "POWERED DESCENT AT "RD" M/MIN"

PRINT "TIME TO DESCEND FROM "ZT" KM="TD" HRS

PRINT "FUEL FOR DESCENT = "HD * LH(1)" KGS"

PRINT "AUXAWAY AT ALT TIME AND DISTANCE = "T1" HRS AND "ST / 10

OO" KM"

PETNT "FUEL FOR AUXAWAY
 3960
3970
3980
  3990
 4000
 4010
4020
                                        <u>֡֞֞֞֞֞</u>֞֓֞֓֞֓֞
                        OO" KM"

FRINT "FUEL FOR AUXAWAY = "HJ * LH(1)" KGS"

FRINT "FUEL FOR BLOWER = "DB * LH(1)" KGS"

PRINT "FUEL FOR LANDING 4HR AT THRESHOLD PWR(SL 29.8KT)="HL * L

H(1)" KGS"

FRINT "FUEL USED FOR DESCENT OFS INCL 8HR LANDING = "DSF" KG

PRINT "FUEL USED FOR DESCENT OFS INCL 8HR LANDING = "DSF" KG

PRINT "FUEL USED FOR DESCENT OFS INCL 8HR LANDING = "DSF" KG

PRINT "FUEL USED FOR DESCENT OFS INCL 8HR LANDING = "DSF" KG

PRINT "FUEL USED FOR DESCENT OFS INCL 8HR LANDING = "DSF" KG

PRINT "TOTAL FUEL WT FOR DISSION = "FUL

FR# O: IF AX = 2 THEN RETURN
 4030
 4040
4050
 4060
4070
4080
  4090
  4100
                              REM
                        WG = GDRY + FUL + MTA + R(13): REM GROSS WT KG
IW = LI(3) - WG: REM FREELIFT AEROSTATIC
PQ$ = "2": REM PR#1; TO ACTIVATE CHANGE THIS LINE TO PR#1 ONLY
 4110
4120
4130
                       FQ$ =
                             PRINT TAB( 4)"VOLUME,M†3. VO="VO
PRINT "GROSS WT,KG, WG=" TAB( 22)WG: PRINT "STATIC LIFT, LD(3)=
' TAB( 22)LD(3): PRINT "FREELIFT, DW=" TAB( 22)DW: PRINT : PRINT
  +140
 4150
                        IF FQ$ = "2" THEN 4200
INPUT "DO YOU WANT DETAILS PRINTEDT(Y/N)N";FG$
IF FO$ = "Y" THEN FQ$ = "1": GOSUB 4290
PQ$ = "2"
FRINT : FR# 0
IF ABS (DW) > 1 THEN GOTO 4930
FOR I = 1 TO 5: IF TL(I) > = .315 THEN PRINT "STOP:TL("I") IS TOO LARGE,="TL(I)"::SPEED UP OR REDUCE LOAD": STOP
NEXT I
GOTO 4270
IF AX = 1 THEN RETURN
4160
41780
41900
42100
4220
4220
4230
4240
4250
4270
427
                        IF AX = 1 THEN RETURN I = 0
                             FEM
                                                    INPUT"DO YOU WANT TO SEE THE ASCENT AND DISCENT PROFILE ? (
                        4280
4290
4300
4310
4320
4330
                        PRINT " VOL" SPC( 3)"ALT" SPC( 3)"THRSH" SPC( 4)"LIMIT" SPC( 3)"PROP" SPC( 3)"WEVN" SPC( 4)"PSWT" SPC( 4)"FUEL" SPC( 4)" PLD " SPC( 5)"BLST" PRINT " M13" SPC( 3)" KM" SPC( 4)"KW" SPC( 6)"KW " SPC( 4)"KW " SPC( 4)"KW " SPC( 4)"KG " SPC( 4)"
 4340
 4350
                             5)" KG "
FRINT "-----
 4360
                                                    INT ((A / GDRY + .0055) * 100):A1$ = STR$ (A1)
INT ((EI / GDRY + .005) * 100):B1$ = STR$ (B1)
INT (((FE * (LH(1) / LH)) / GDRY + .0055 * 100
 4370 A1 =
4380 B1 =
                                                                                                                                                                                                                                                       * 100):C1$ = STR$
 4390
                          (Ĉ1)
                                                   INT (A + .5)) + .0001
INT ((B * 100) + .5) / 100) + .0001
INT (FE + .5) + .0001)
INT (EI + .5)) + .0001
STR$ (C)
INT (((FD - FD(2)) * 100) + .5) / 100) + .0001
 4400
                         A = (
4410 H = (
4420 C = (
4430 EI = (
 4440
                         H $ =
 4450 \text{ DF} = (
                                                    STR$ (VOL)
STR$ (ZT)
STR$ (K4(4))
 4460 A$ =
4470 B$ = 4480 C$ =
                                                    STR$
STR$
STR$
                                                                         (K1(4))
 4490 Ds =
 4500
4510
                                                                         (K1(1))
                         E $ =
                                                    STR# (A)
STR# (EI)
STR# (D)
                      F$ =
4520
4530
                     G$ =
                     H$ =
                                                     STR$ (B(9))
 4540
                      I$
                                    =
```

```
J# = STR# (B(13))
PRINT SPC( 1) LEFT# (A#,6) SPC( 3) LEFT# (B#,6) SPC( 3) LEFT#
(C#,6) SPC( 5) LEFT# (D#,6) SPC( 3) LEFT# (E#,6) SPC( 2) LEFT# (I#,6) SPC( 5) LEFT# (I#,6) SPC( 4) LEFT# (I#,6) SPC( 5) LEFT# (I#,6) SPC( 4) LEFT# (I#,6) SPC( 5) LEFT# (I#,6) SPC( 6) LEFT# (II#,2)"%" SPC( 6)
#550 J# =
#560 PRI
4570
4580
4590
 4600
 4610
4620
4630
 4640
 4650
 4660
4670
 468Ö
44777774
4777774
4777774
4750
4750
4760
4770
                         ° 4 I
                        4780
4790
 4800
 4810
                                                                                                                                                                                                                                                       *55 / 100" m"
"#CO$(1): PRINT
                        LENGTH WITH 5% (
IF LEN (CO$(1)) < > 0
10)$CO$(2)
PR# 0: IF PQ$ = "1" THEN
PR# 1
                                                                                                                                                                                                                                                                                                                                        SPC(
 4820
 4830
                                                                                                                                                        RETHEN
 4840
 4850
                             REM
                             REM D
                                                   PRINTCHR#(12)
4860
4870
                                                 1: PRINT "DEMONSTRATOR VOLUME= "VO" CUBIC METERS ----> = " (.3048 † 3))" CUBIC FEET
 4880
                             FR#
                                               1:
4890
4900
                             GOTO 5600
                             END
                                                    PRINT"SHIP IS NOT LARGE ENOUGH":PRINT"LIFT = "F,"WEIGHT =
 4910
                             REM
                        "G:END

PRINT "TOD MUCH FUEL USED": FRINT "FUEL WT AVAILABLE AFTER

SIZING = "M: PRINT "FUEL AVAILABLE PRIOR TO TRAVEL = "DW: E

REM KARL'S CONVERGENCE ON VOLUME

IF V(1) = 0 THEN V(1) = VB:F(1) = DW: GOTO 4990

V(2) = VD:F(2) = DW

VO = ( - F(1)) * (V(2) - V(1)) / (F(2) - F(1)) + V(1):VO =
4920
 4930
4940
4950
                      V(1) = V(2):F(1) = F(2)
GOTD 2350
VD = VD - (2000 * SGN (
GOTD 4980
FR# 1: REM ****SYMBDLE
HOME : FRINT TABK 12)''
FRINT TABK 10)''VELOCIT
FRINT "UK=VEL KTS" TABK
FRINT "(1)=THRESUC, TABK
FRINT "(1)=THRESUC, TABK
FRINT "(1)=THRESUC, TABK
 4950
                                                                                                                                                                                                                                                                                                                     INT
 4970
 4980
 4990
                                                                                                                 SGN (IW))
4980
: REM ****SYMBOLS PLAN***
: FRINT TAB( 12)"** SYMBOLS PLAN **": PRINT
    TAB( 10)"VELOCITIES"
    "UK=VEL KTS" TAB( 20)"UM=VEL M/S": PRINT
    "(1)=THRESHOLD" TAB( 20)"(2)=AUX ONLY"
    "(3)=MAXIMUM" TAB( 20)"(4)=CUBE AVE MAXS"
    "(10)=DESIGN SPEED" TAB( 20)"(5)=LIMITING "
    "VX(I) = AUX ONLY M/S ASCENT-DESCENT AT ALT I
    : PRINT : PRINT TAB( 10)"COMPONENTS"
    "(0)=BLOWER"
    "(1)=PROPELLER" TAB( 20)"(2)=SHAFT" TAB( 40)"(3)=GEARBOX"
5040
5070
                             PRINT
PRINT
 5080
                             PRINT
                            PRINT
5090
5100
 5110
                       FRINT "(4)=FRIMARY MOTOR" TAB( 20)"(5)=RECTENNA" TAB( 40)"(6)=A UX ENGINE" FRINT "(7)=GENERATOR" TAB( 20)"(8)=AVIONICS" TAB( 40)"(9)=FAYLO
 5120
5130
                        AI!"
                         FRINT "(10)=TRANSWIRE" TAB( 20)"(11)=CONE" TAB( 40)"(12)=WATER
```

er.

```
RECOVERY SYS
PRINT "(13)=BALLAST"
PRINT : PRINT
PRINT TAB( 10)"POWE
              PRINT : PARTIAL"
5150
5160
5170
5180
5190
                                  *TAB( 10)"POWER,KW; FORMAT K FUNCTION(COMPONENT)"
"--FUNCTIONS--"
"K1=LIMITING" TAB( 20)"K2=CRUISE MAX" TAB( 40)"K3=CRUISE
                                   "K4=THRESHOLD" TAB( 20)"K5=LIMIT INTO" TAB( 40)"K6=LANDIN
5200
                  PRINT
                 PRINT "K7=RESERVE" TAB( 20)"KB=DESIGN MAX" TAB( 40)"K9=AUX OFF
STAT & AUX NESIGN"
PRINT : PRINT TAB( 10)"AUX ENERGY,KWHR: FORMAT H FUNCTION(CO
5210
               STAT
                  PRINT
                                                                                                                                              FORMAT H FUNCTION COM
5220
              PRINT: FRIM: .....PONENT)
PONENT)
PRINT "--FUNCTIONS--"
PRINT "H1=ASCENT" TAB( 20)"H2=AUXBACK" TAB( 40)"H3=DN STATION"
PRINT "H4=AUXAWAY" TAB( 20)"H5=DESCENT" TAB( 40)"H6=LANDING"
PRINT "H7=RESERVE" TAB( 20)"H8=ASCENT OPS" TAB( 40)"H9=DESCENT
5230
5240
5250
5260
               PRINT
OPS"
PRINT
                                 "HT=TOTAL MISSION"

PRINT TAB( 10)"FUEL, KG: FORMAT F FUNCTION"

"FUNCTION AS FOR ENERGY ABOVE"

FUL=TOTAL MISSION"

FRINT TAB( 10)"TANKS, KG"

TAB( 10)"CONVERSION FACTORS": PRINT "C2=KNOTS TO M/S .51

PRINT "C3='CM H20'TO PASCALS 98.0838

"TKS=TOTAL MISSION"

FRINT TAB( 10)"ALTITUBE"

"ALT=METERS" TAB( 20)"ZT=KILOMETERS"

PRINT "WEIGHTS, KG" TAB( 20)"WEIGHT COEFF" TAB( 40)"POWE

F" SPC( 10)"MISC"

TAB( 4)"B(COMF)" TAB( 25)"WC(COMP)" TAB( 40)"KC(COMF)" SPC(
52290
52290
5323
5332
5332
                 PRINT
PRINT
PRINT
PRINT
PRINT
               4444":
FRINT
5330
5340
                 PRINT
PRINT
PRINT
              PRINT : PRINT
R COEFF" SPC( .
PRINT TABY .
5360
5370
               PRINT TAB( 4)"B( DMF)" TAB( 25)"WC( DMF) TAB( 40) RC( DMF) TAB( 10)"AR( 5) RECTENNA AREA"

PRINT TAB( 1)"PLUS" SPC( 53)"AL ANGLE OF INCIDENCE LIMIT": PRINT TAB( 1)"B2=WIRE RECT TO MOT": PRINT TAB( 1)"B3=WIRE AUX TO MOT: PRINT TAB( 1)"B3=WIRE AUX TO MOT: PRINT TAB( 1)"WG=GROSS WT"

PRINT TAB( 1)"WG=GROSS WT"

PRINT : PRINT TAB( 10)"EFFIC COEFF"
5380
5390
                                 : PRINT TAB( 10)"EFFIC COEFF"

"E(COMPONENT)

TAB( 10)"CONVERSION FACTORS": PRINT "C2=KNOTS TO M/S .51
PRINT "C3='CM H20'TO PASCALS 98.0638
5400
                 PRINT
PRINT
5410
5420
                4444":
5430
                  FR# O: END
5440
                  REM
REM
              REM SHAFT WT CALC+POWER TO TORQUE TO STRESS TO WT; FOR RECORD PURPOSES, NOT PART OF MAIN PROGRAM E(1) = .9:FI = 3.14159 INPUT "Ki(1),SL = ";Ki(1),SL S(1) = 1.45EB; REM AL6061T6 SHEAR STR N/M2 S(2) = 2700:S(3) = .25: REM AL DENSITYKG/M3, SHAFT RADIUS M S(4) = (Ki(1) * 1000 / E(1)) / (2 * FI * 1.67); REM TORQUE AT 100 PEM
5450
5460
5470
                                                                      *159
= ";K1(1),SL
AL6061T6 SHEAR STR N/M2
.25: REM AL DENSITYKG/M3, SP
DO / E(1)) / (2 * PI * 1.67):
5480
5490
5500
               100 RPM
5(5) = 1
5510
5520
5530
                      5) = S(4) / (S(1) * S(3)):
= S(5) * S(2) * SL: REM :
EM_ABOVE_REDUCES_TO_A CON!
                                                                                                                   XSECT AREA M2
WT KG
                                                                                                    REM
                                                                                                                   WT KG
WC(2)*K1(1)*SL WHERE WC(2)=0.0
                                                                                                 SHAFT
              EX
              KEM ABOVE REDUCES TO A CONSTANT WC(2)*K1(1)*SL WHERE WC(2)=0.079 FOR FACTORS AS GIVEN. B(2) = 0.0079 * K1(1) * SL FRINT "B(2)-BX="B(2) - BX: REM COMPARES SIMPLIFIED B(2) WITH XACT BX FRINT "B(2),K1(1),SL,S(4),S(5)" TAB( 30)B(2): PRINT K1(1) TAB( 20)SL: PRINT S(4) TAB( 20)S(5) GDTD 5450 FND
5540
5550
                                                                                                                COMPARES SIMPLIFIED B(2) WITH E
5570
5580
5590
                  ENI
              END
PR# 1: PRINT TAB( 20)"* * * * * * * * * * * * *
PRINT "CALC LIMIT SPEED AT OTHER ALT, SAME PWR"
FOR I = 12 TO 24: READ KV(I): NEXT
PRINT "VO="VO" ALT, KM="ZT" ENG KW="K1(4)"
FOR I = 12 TO 24:U = UK(5) * ((R(ZT) / R(I)) †
(5) * LF / KV(I): PRINT "ALT, KM="I" U, KTS="
) / 10; TAB( 30)"RN/E6=" INT ((RN / 1E6) * 10 +
ZT THEN PRINT " <---DESIGN";:J = I
                  ENI
FR#
                                                                                                                                                            * * *"
5800
5610
5620
5630
                                                                                                                                                              PROP NW="K1(1)
                                                                                                                                                             (1 / 3)):RN = UM
INT (U * 10 + .5
                                                                                                                                                            (1
5640
                 ) / 10; TAB( 30)"RN/E6=
T THEN PRINT " <---DE
PRINT
IF U < UK(1) THEN PRI
IF I = J + 2 THEN 5690
                                                                                                                                                                               10::
                                                                                                                                                              .5) /
5650
5626
5620
                                                                          PRINT "LIMIT < THRESHOLD OF "UK(1)" KTS"
5680
                  NEXT
55700
5700
5700
57710
57720
5730
               AS$ = "CV";
                                               PR# 1:A% = 2:
NT CHR# (12):
                                                                                           GOSUB 3550
                 PŘ# 1: PRÍNT
STOP
CLEAR
INPUT "VARIA
                                                                                           PR# ()
                               T "VARIABLES CLEARED, GDES TO 10, INPUT NEW ALT="#ALT "SKIP": GOTO 10
              5K$ =
```

- .

5740 DATA 4.5574E-5.5.3325E-5.6.2391E-5.7.2995E-5.8.5397E-5
5750 DATA 9.9902E-5.1.1688E-4.1.3870E-4.1.5989E-4.1.8845E-4.2.2201E
-4.2.6135E-4.3.0743E-4
-7.2.6135E-4.3.0743E-4
-7.2.6135

1 6 6 1 5 6

1 35

HAPPDEMO 260CTB2 BASELINE 280CTB2

```
DOLPHIN SOFT FINS
 VūL
                                                                       WEVN POWT FUEL PLICENCE KG KG KG
                                         LIMIT
                           THRSH
                                                           PROF
                ALT
                                                           K₩
                            K₩
                                             K₩
                                                                      KG
                                                                                                                                        NG
                                                         45.963 692.00 498.00 149.00 100
48% 35% 7%
                           23,290
 10550 15
                                         56
                                                                SUPERCOOL = -17.2 K
PROP CD = .0187681845
DAY PRESS (CM H20) = 12.273
NITE PRESS= 2.5
 SUPER HEAT = 10.7 K
CI = .018
SAFTEY FACTOR = 5
UNIT FAB WT=.11867 KG/M2
---WEIGHTS KGS:---
TAPE WT = 27.1205152
FIN SYS = 55.1271831
CDNE WT = 47
VALVE WT = 3.22350151
POWER SYSTEM WT
PROPELLER = 96.5223
GEAR BOX = 22.874
                                                                HULL = 339.00644
BALONT SYS = 206.590892
BLDWER = 13.9036066
                                                                SHAFT = 6.3308
PRIME MBTOR = 235.2
TRANS. WIRE = 0
GENNERATOR = 2.343
TANKS = 17.3103388
WATER RECOVERY=0
 GEAR BOX = 22.876
RECTENNA = 0
AUXE ENG = 0
AVIONICS = 117.3
RECTENNA AREA =0 ANGLE OF INCIDENCE LIMIT=0
MICROWAVE BEAM KW/M2= 0
LIFT = 1674.48424 KGS WEIGHT = 1674.55296 KGS
VELOCITIES, KTS
LIMIT=73.3835826 THRESHOLD=55
AUX DESIGN=0 CUBE AVE>THRES=0
VOLUME=10550 M3. DIAMETER =19.43 M LENGTH WITH 5% CUT=63.33 M
DEMONSTRATOR VOLUME= 10550 CUBIC METERS ----> = 372569 CUBIC FEET
```

#APPDEMO 260CT82 BASELINE 280CT82

```
DOLPHIN SOFT FINS
                                                             PROP WEUN POWT FUEL PLD BLOT
KW KG KG KG KG KG
                 ALT
                             THRSH
      VOL
                                             LIMIT
    mt3
                  КM
                             KW
                                               K₩
                                                           45.963 692.00 498.00 149.00 100 48% 35% 9%
   10550 15
                             23,290 56
                                                                                                                                            235.2
                                                                   SUPERCOOL = -17.2 K
PROP CD = .0187681845
DAY PRESS (CM H20) = 12.273
NITE PRESS= 2.5
 SUPER HEAT = 16.7 K
 CD = .018
SAFTEY FACTOR = 5
UNIT FAR WT=.11867 KG/M2
---WEIGHTS KGS:--
---WEIGHTS KGS:---
ENVELOPE WT
TAPE WT = 27.1205152
FIN SYS = 55.1271831
CONE WT = 47
VALVE WT = 3.22350151
FOWER SYSTEM WT
PROPELLER = 96.5223
GEAR BOX = 22.876
RECTENNA = 0
AUXE ENG = 0
AVIONICS = 117.3
                                                                   HULL = 339.00644
BALDNT SYS = 206.590892
BLDWER = 13.9036066
                                                                   SHAFT = 6.3308
                                                                   PRIME MOTOR = 235.2
TRANS. WIRE = 0
GENNERATOR = 2.343
TANKS = 17.3103388
                                                                   WATER RECOVERY-0
 RECTENNA AREA =0
                                                                   ANGLE OF INCIDENCE LIMIT=0
 RECTENNA AREA =0

MICROWAVE REAM KW/M2= 0

LIFT = 1674.48424 KGS WEIGHT = 1674.55296 KGS

VELOCITIES, KTS

LIMIT=73.3835826 THRESHOLD=55

AUX DESIGN=0 CUBE AVE>THRES=0

VOLUME=10550 M3. DIAMETER =19.43 M LENGTH WITH 5% CUT=63.33 M
DEMONSTRATOR VOLUME= 10550 CUBIC METERS ----> = 372569 CUBIC FEET
```

APPENDIX B

APPENDIX B

This Appendix in Section 1 gives results of a brief survey of engine possibilities for the HAPP Demonstrator.

Section 2 is a presentation by Thunder Engines, Inc., on the possibilities for development of a suitable turbocharged reciprocating engine for the HAPP Project.

APPENDIX B

SECTION 1

HAPP DEMONSTRATOR

ELECTRIC * Motor

Battery

Lithium

NiCad

Fuel Cell

Reciprocating Generator

RECIPROCATING

* Supercharged

Turbocharged

_ ∫ Air cooled

Liquid cooled

Fossil Fuel

Hydrazine

TURBINE

Turbojet

Turboshaft

ELECTRIC

An electric drive motor propulsion system can be configured several different ways. In all cases, the drive motor is a DC Samarium Cobolt electric drive.

Drive Motor

Inland Motor Co.

Samarium Cobolt

250 - 300 VDC

30 HP per motor @ 10000 rpm

Liquid Cooled

.80 - .90 efficiency off the shelf

Battery

Nickle - Cadmium

Union Carbide and RCA Astro Electronics

Long Shelf Life

550 Kw - hrs + 22000 lbs

Lithium

RCA Astro Electronics and NASA Goddard

Non-rechargable (primary)

2.4 - 3.3 volts/cell

Usually deliver power @ slow rates

~ 100 <u>Watt - hrs</u> #

550 Kw - hrs \rightarrow 5500 lbs

ELECTRIC (cont'd)

Fuel Cell

Westinghouse Advanced Energy Systems

Englehrad Industrial and United Technologies

Electro chemical reaction

Can be wired for just about any voltage

Can constantly adjust to power demanded

30 Watts

#

37 kw \rightarrow 1230 lbs

40 Std ft³ of hydrogen/kw-hr

May require oxygen or compressor to meet

oxygen demanded, H₂ + 0 \rightarrow H₂0

\$100K - 500K w/controller electronics

Generator

Inland Motor/RPM Development

Samarium Cobolt Generator

Turbocharged Reciprocating (See Recip. Power Plant Section)

Will require development for generator

TURBINE

A turbine based system may be difficult to start at altitude. The turbine power output capability decreases with inlet air density. To provide 50 hp at altitude, the engine must be sized to provide ten times that at sea level.

TURBINE (cont'd)

Turbojet

High velocity exhaust gas inappropriate for use with slow flying vehicle.

Turboshaft

Williams Research and Pratt and Whitney

PT-6-A25, 550 shp @ SL output 2200 rpm

.60 lb/HP-hr

303 lbs

Fuel wt = 450 lbs for 15 hrs at 50 hp.

Requires an additional gearbox to

output 100 rpm from 2200 rpm output

This engine has been operated at 55000 feet.

Vertical operation during launch potential problem.

RECIPROCATING

Due to the low air density at 50000 feet, the inlet air to the engine must be compressed. This can be accomplished with a gear driven (supercharger) or exhaust powered (turbocharged) compressor. To obtain a wide range of power levels at altitude, the compressor as a minimum must have two stages. An additional consideration is engine cooling. Due to the low air density, air cooling, in any conventional sense, is not adequate and the engine must be liquid cooled. Aviation engine manufacturer expertise generally apply to air cooled engines. A liquid cooled, high altitude reciprocating engine is a special development item.

Must start engine at low altitude.

RECIPROCATING (cont'd)

Three possible fuels are considered.

- Hydrogen Requires insulated tank.
 Potential handling problems.
- 2. Fossil Fuel Well understood
- Hydrazine Not pursued because it was felt too hazerdous for this mission.

RPM Development

165 in³ 4 cylinder

170 hp.

SFC = ?

Will require turbocharger and gear box development.

Engine \$50 K

Gearbox \$50 K

Turbo \$100 K

Rotoway

4 cylinder, opposed

Water cooled block

100 hp at SL

Used in small helicopter

Development costs unknown

THUNDER ENGINES INC.

PROPULSION SYSTEM PROPOSAL FOR I.L.C./HAP PROJECT

Prepared by Thunder Engines, Inc. 501 Reservation Road Marina, California 93933 (408) 384-3063

October 1982

November 3, 1982

I. L. C. Dover, Inc. P. O. Box 266 Frederica, Delaware 19946

Attn: James Thiele

Dear Mr. Thiele:

Please find enclosed the propulsion system description for your proposal on the HAP project.

In summary, this material comprises:

1.) The Problem Statement.

2.) The Design Approach of Thunder Engines.

3.) An approach to engine sizing.

4.) Description of two candidate engines.

5.) The turbosystem analysis.

6.) Heat exchanger design and sizing calculations.

7.) Sketch of the layshaft-type gearbox.

8.) A weight summary.

9.) A cost overview.

10.) A brief description of Thunder Engines facility and staff structure.

I trust this material is of use in your report, and it may interest you to know we have aimed for the maximum amount of duplication between this proposal and the Lockheed HI-SPOT with regard to the candidate engine and parts of the turbosystem.

Thunder Engines is, we believe, uniquely equipped by reason of company size, recent experience and industry contact to be a very effective sub-contractor on your propulsion system. Please consider our company very seriously if the contract for a flight demonstrator is awarded.

Yours sincerely,

W.M Warde.

W. Martin Waide Vice President Engineering

WMW: lah

The Problem Statement

Thunder Engines R & D staff have been approached for an initial appraisal of a propulsion system with the following characteristics.

Rated Power at Altitude - 70 B.H.P. at 50,000 feet.

Minimum practical installed system weight.

Emphasis on minimum fuel consumption.

Reduction drive for large, slow-turning propeller.

A turbocharged, liquid cooled, four-cycle engine can be produced with these characteristics. Extensive supporting data exists from similar automotive and aircraft designs, and as a result, the following description is seen as a low-risk approach.

A brief outline of the analytical approach to engine, turbocharger and intercooler sizing is provided in subsequent paragraphs.

The Design Approach of Thunder Engines

Thunder Engines capability includes the design, prototype build and testing skills necessary to produce a lightweight engine of the required displacement.

However, a brief survey of existing liquid cooled, light, large displacement 4 cylinder engines shows that the Lotus 907 is a possible candidate. This British engine is constructed from aluminum die castings, and as 70 B.H.P. at 4000 rpm is a considerable de-rating from its designed power, a bore and stroke increase to 4.1 x 3.25 is feasible. These modifications give a swept volume of 165 cubic inches. An assembled engine dry weight of 155 lbs. can be achieved.

One other alternative is the recently constructed 4 cylinder Weslake engine, which would produce its rated power at 4000 rpm from a displacement of 236 cubic inches, but which would require a conversion to liquid cooling. This is already a minimum-weight design, being intended for large motor gliders.

Both the above engines feature four valves per cylinder giving high combustion efficiency and a 70% power B.S.F.C. of 0.40 lbs. per H.P. hour. Depending on the time and budget constraints of the subject program, the modification of an existing proven engine would merit further study. (Thunder Engines could, however, rapidly produce a candidate engine which properly meets the unique requirements.*)

*i.e. we could build from a folsh design, but it makes more sense to use she most applicable, existing, cylinder block as a basis for a flight engine. B2-3

THUNDER ENGINES INC.

Photographs of various components of the in-line 4-cylinder engine are enclosed. Please understand that the engine will be re-configured with a lightweight crankshaft, and a light, single camshaft cylinder head.

One other candidate engine, still in development by General Motors, but undoubtedly intended for production, is

the Buick lightweight V-6 engine.

This die cast, integral crankcase, cylinder block and cylinder liner component is currently being produced in small batches for prototype use. A considerable investment has been made in the tooling, and the beautiful result represents the "state of the art" in thin-wall Reynolds 390 aluminum cylinder blocks. Weighing 38 pounds, the 160 to 180 cubic inch displacement block is close to the weight of some experimental graphite/glass/epoxy blocks, yet avoids the expense and risk of that approach. An adequate supply of these blocks could almost certainly be negotialted with G.M. senior management when the time came to build a propulsion system in '83.

Photographs of this block are enclosed, and some of the automotive features amounting to 15 cubic inches of material not required for the flight application could be removed, saving 1.4 pounds. At a rated power of 70 B.H.P., the engine is conservatively stressed and represents a low-risk, fast response approach for an available candidate engine. Again, the crankshaft, cylinder heads and accessories would be reconfigured in flight weight form. A small scale drawing showing this v-6 engine with manifolding is enclosed, as are some full scale block drawings to enable you to get an

appreciation of relative sizes.

The design and development of lightweight high-efficiency turbochargers is a complex subject, and Thunder Engines is currently contracted to a small California company (THERMO MECHANICAL specializing in this field. In the areas of analysis, SYSTE prototype build and sub-system test, Thunder Engines would be properly supported in the turbocharger aspects of the program.

With regard to the propeller reduction gearing, Thunder Engines has successfully designed, built and tested a series of reduction gear boxes. Complete responsibility could be taken for this part of the project, with actual gear manufacture being sub-contracted to one of three Los Angeles gear specialists.

THUNDER ENGINES INC.

Engine Sizing

Cubic Inch displacement is determined as follows:

- 1. B.S.F.C. is assumed to be .41 at altitude, thus m fuel = 70 B.H.P. X 0.41 lb/hp-hour = 28.7 lb/hour = 0.478 lb/min fuel (gasoline)
- 2. F/A ratio is assumed to be 0.067

$$\frac{\dot{m} \text{ fuel}}{F/A} = \frac{0.478 \text{ lb.fuel/min.}}{0.067 \text{ lb. fuel/lb.air}} = 7.134 \text{ lb/min engine airflow.}$$

3. Manifold Pressure is given to be 15 "HgA Manifold air temperature to be 85 F., and volumetric efficiency to be 100%

C.I.D. =7.134 lb/minx0.37
$$\frac{k^3 \text{ Asia}}{16 \text{ min}}$$
 (460+85) R. ($\frac{12 \text{ in}}{1 \text{ ft}}$) $\frac{3}{2.036}$ p.s.i.a. (4000 r.p.m.) ($\frac{1}{2}$ cycle) $\frac{15.3}{2}$ rev.

= 165 CUBIC INCHES

4. Brake Mean Effective Pressure is given by B.H.P. X 33,000 L.A.N/2

where L = length of stroke in feet A = total piston area in square inches N/2 = no. of firing strokes per minute.

B.M.E.P.=
$$\frac{70 \times 33,000 \times 12}{3.25 \times 52.8 \times 2,000}$$

= 80.8 P.S.I.

There are some specific reasons for selecting a low B.M.E.P., a relatively low manifold pressure and correspondingly large swept volume.

The low B.M.E.P. gives modest engine stresses and allows light components to be used.

The low manifold pressure permits a two-stage comp.ressor, operating at a modest pressure ratio and
hence allowing a broad range of powers.

* For rele 50, oer ft. demonstration.
3-stages regid for 70 Kft.

EXPERIMENTAL ENGINE BLOCK V6 ALUMINUM ALLOY WEIGHT 38 POUNDS

THUNDER ENGINES INC.

TURBO-SYSTEM PROPOSAL FOR THE I.L.C. PROPULSION SYSTEM.

Prepared for Thunder Engines Inc. by:Thermo Mechanical Systems Co.
Canoga Park,
California.

The proprietory rights are to be observed.

Technical data contained in this proposal shall not be used or disclosed, except for evaluation purposes, provided that if a contract is awarded to this submitter as a result of or in connection with the submission of this proposal, the Buyer shall have the right to use or disclose this technical data to the extent provided in the contract. This restriction does not limit the Buyer's right to use or disclose any technical data obtained from another source without restriction.

1.0 OVERVIEW/OBJECTIVES

This proposal presents the TMS approach for developing a turbocharger system for the TE high altitude propulsion system. Propulsion system performance goals, at the design 70,000 ft altitude, are:

- . Maximum power of 70 BHP at about 4000 RPM and 17"Hga boost pressure
- . Minimum power of about 15 BHP at about 2000 RPM and 7.3"Hga boost pressure The proposed TE engine is of about 165 in displacement and, with about 94% volumetric efficiency, gives maximum and minimum power air flow rates of .124 lb/sec and .0266 lb/sec respectively. For best efficiency (i.e. lowest fuel consumption) over this broad operating range (i.e. 15 to 70 hp) it was decided to use a 3 stage turbocharger system with maximum per stage compressor pressure ratio of about 2.4 to 1. This low per stage compressor pressure ratio will provide significantly better fuel economy over the required broad range than a 2 stage system.

The following sections present i) the system preliminary analyses/design,

ii) the proposed development program (i.e. Statement of Work), and iii) the

estimated program time. Also included as an attachment to this proposal

is a TMS report giving a brief summary of experience capabilities, facilities,

personnel and related contracts.

2.0 SYSTEM PRELIMINARY ANALYSES AND DESIGN

A preliminary analyses was performed to determine 1) compressor design requirements, 2) turbine design requirements, and 3) turbo/engine matching requirements, over the range of engine operating conditions.

With respect to item (1), the performance goals dictate a three stage turbocharger system having first, second, and third stage compressor impeller diameters of about 6.25 inches, 5.0 inches, and 3.0 inches, respectively. These impellers will be machined using existing TMS tooling and will be of an existing design which has demonstrated high efficiency over a broad range. However, due to the relatively low compressor pressure ratios per stage (compared to previous TMS compressor designs) the outlet area from each impeller must be increased (by as much as 50%) over that of previous TMS impellers.

With respect to item (2), preliminary analyses indicates that off-the-shelf commercial turbine wheels can be used for all three stages. The first stage will utilize the Howmet fabricated VAT turbine rotor with a tip diameter of about 6.4 inches; the second stage will utilize the AID T18A40 turbine rotor with a tip diameter of about 5.1 inches; and the third stage will utilize the Schwitzer 4LE303 turbine rotor with a tip diameter of about 3.6 inches.

with respect to item (3), Figures 1 and 2 present the results of the turbo/
engine matching at the maximum and minimum power conditions, respectively, at
the 70,000 ft design altitude. It should be noted that these results are the
final results of many iterations in which turbine nozzle areas were matched
i) to provide the required 7.3"Hga boost at minimum power conditions while ii)
providing equal compressor pressure ratios of about 2.41 at maximum power
conditions. As noted in Figure 1, the maximum horsepower (70 BHP) propulsion
system operating conditions are:

2.0 SYSTEM PRELIMINARY ANALYSES AND DESIGN

A preliminary analyses was performed to determine 1) compressor design requirements, 2) turbine design requirements, and 3) turbo/engine matching requirements, over the range of engine operating conditions.

With respect to item (1), the performance goals dictate a three stage turbocharger system having first, second, and third stage compressor impeller diameters of about 6.25 inches, 5.0 inches, and 3.0 inches, respectively. These impellers will be machined using existing TMS tooling and will be of an existing design which has demonstrated high efficiency over a broad range. However, due to the relatively low compressor pressure ratios per stage (compared to previous TMS compressor designs) the outlet area from each impeller must be increased (by as much as 50%) over that of previous TMS impellers.

With respect to item (2), preliminary analyses indicates that off-the-shelf commercial turbine wheels can be used for all three stages. The first stage will utilize the Howmet fabricated VAT turbine rotor with a tip diameter of about 6.4 inches; the second stage will utilize the AID T18A40 turbine rotor with a tip diameter of about 5.1 inches; and the third stage will utilize the Schwitzer 4LE303 turbine rotor with a tip diameter of about 3.6 inches.

with respect to item (3), Figures 1 and 2 present the results of the turbo/
engine matching at the maximum and minimum power conditions, respectively, at
the 70,000 ft design altitude. It should be noted that these results are the
final results of many iterations in which turbine nozzle areas were matched
i) to provide the required 7.3 Higa boost at minimum power conditions while ii)
providing equal compressor pressure ratios of about 2.41 at maximum power
conditions. As noted in Figure 1, the maximum horsepower (70 BHP) propulsion
system operating conditions are:

- . an engine speed of 4000 RPM
- . an air flow rate of .124 lb/sec
- a boost pressure of 17.0"Hga
 giving an engine △ P of +8.5"Hga
 an exhaust pressure of 8.5"Hga
- . an engine exhaust gas temperature of $2110^{\circ}R$
- . 30% wastegate flow
- equal compressor pressure ratios of 2.41
- . 1st, 2nd, and 3rd stage turbo speeds of 42,903, 59,141, and 98,550 RPM respectively
- . 1st, 2nd, and 3rd stage turbo shaft horsepowers of 7.0, 9.0, and 9.0 hp respectively, with 3% bearing losses
- . assumed intercooler \triangle P's of 4% and outlet temperatures of 545 R
- . compressor and turbine efficiencies between 70 to 75%

Similarly, from Figure 2 the minimum horsepower (15 BHP) propulsion system operating conditions are:

- . an engine speed of 2000 RPM
- . an air flow rate of .0266 lb/sec
- . a boost pressure of 7.33"Hga giving an engine △ P of +4.4"Hga
- . an exhaust pressureof 2.94"Hga
- . an engine exhaust gas temperature of 2110 R
- . 3% wastegate flow (due to leakage only)
- . 1st, 2nd, and 3rd stage compressor pressure ratios of 1.41, 1.75, and 2.30 respectively
- . 1st, 2nd, and 3rd stage turbo speeds of 25,719, 46,051, and 95,278 RPM respectively
- . 1st, 2nd, and 3rd stage turbo shaft horsepowers of .52, 1.14, and 1.8 hp respectively, again with 3% bearing losses
- . assumed intercooler \triangle P's of 1% and outlet temperatures of 545 $^{\circ}$ R

compressor and turbine efficiencies between 70 to 75%

As shown in Figures 1 and 2, only the 2nd and 3rd stage air coolers are needed as the combination of i) the low ambient temperature (392°R) and ii) the low stage pressure ratio, eliminates the need for the first stage air cooler. As shown, the 2nd and 3rd stage air cooler heat rejection rates are 6.2 Btu/sec each at the maximum power condition, and .80 Btu/sec and 1.24 Btu/sec respectively, at the minimum power condition. Furthermore, the preliminary control system analyses indicates that a single wastegate between the engine and the 3rd stage turbine will provide the required operating range control. As indicated, this wastegate will be essentially closed (i.e. except for leakage), at the minimum power condition and will be approximately 30% open at the maximum power condition. This 30% wastegate flow is necessary to keep from overboosting the engine (i.e. beyond 17.0°Hga) at the maximum power condition.

3.0 PROPOSED PROGRAM (STATEMENT OF WORK)

The development/demonstration of the propulsion system identified in the previous section will be accomplished via the following specific tasks:

- Task 1 Configuration Cycle and System Analysis, Detailed Design and Interface Requirements
- Task 2 Fabrication and Procurement of Turbochargers and Ancillary Equipment
- Task 3 Test Program Preparation
- Task 4 Test Facility Preparation
- Task 5 Testing and Development of Turbocharger and Engine System
- Task 6 Reporting

A brief summary of the effort proposed for each of these tasks is as follows:

Task 1 - Configuration Cycle and System Analysis, Detailed Design and Interface Requirements

The configuration cycle and system analysis, detailed design and interface requirements will further detail and expand on the preliminary analysis and design presented in the previous section. Analysis subtasks to be performed in this task include (but are not limited to):

- 1. To determine engine BMEP, BSFC, and BHP at required engine operating conditions. TMS has available turbocharger and engine matching computer programs that can be used to determine such critical parameters as compressor and turbine efficiencies, required turbine nozzle areas, wastegate settings, engine \triangle P, etc. These computer programs allow determination of propulsion system performance as a function of individual component performance parameters (e.g. turbine efficiency, engine volumetric efficiency, heat exchanger pressure drops, etc.). As a result of this computer program capability, TMS, in close coordination with the engine manufacturer, can suggest/utilize engine design parameters to optimize overall powerplant performance.
- 2. To evaluate potential control systems for optimizing propulsion system performance. Potential control techniques include: exhaust system

wastegate, variable-pitch propeller, engine throttling, and intercooler bypass. It is very possible that several of these controls will be required for optimum powerplant performance.

- 3. To evaluate and to determine the matching parameters (e.g. flow rate, pressure ratio, speed, efficiency, compressor surge) of the three turbochargers as they relate to engine parameters (e.g. flow rate, pressure and temperature at exhaust opening) at required engine operating conditions. This will include final sizing i) the inducers and diffusers for the compressor rotors and ii) the nozzles and exducers for the turbine rotors. In addition, close coordination with the engine manufacturer will be maintained so that engine design options (e.g. valve timing, valve sizes) will be made to give overall highest propulsion system performance.
- 4. To determine/estimate the weight of all turbocharger system components and to reevaluate, if necessary, to meet program goals.
- 5. To evaluate intake manifold, exhaust stack, and interconnecting duct designs and associated losses (e.g. friction, turning, and thermal losses) and to determine acceptable designs to meet overall performance objectives. At the cold environmental temperatures (e.g. -65°F) it may be important to insulate the exhaust stacks and turbine housings to reduce energy losses.
- 6. To evaluate and specify the turbocharger lubrication system design. It is anticipated that the turbochargers will utilize the engine oil lubricant system.

With respect to the detailed design of the turbocharger system, all necessary design effort to define the turbocharger system hardware for fabrication will be performed. This will include showing turbocharger system connections to the engine, heat exchangers and airframe as coordinated with the engine and airframe contractors. As indicated in the previous preliminary analyses section, the estimated compressor impeller

diameters are 6.25, 5.0, and 3.0 inches for the lst, 2nd,
and 3rd stages respectively. The turbine rotors will be from available
commerical units; the VAT for the lst stage, the AID T18A40 for the second
stage, and the Schwitzer 4LE303 for the third stage. Low friction ball
bearing assemblies will be designed for each turbocharger. In addition,
adjustable geometry compressor diffuser and turbine nozzle vanes will be
used on all stages to insure optimum turbo/eninge matching. This adjustable
geometry can/will be eliminated in the final flight hardware. The estimated
flight weight for the complete turbocharger system (including wastegate,
ducting, insulation, etc.) is about 50 lbs with the first prototype demonstration
version weight being about twice that. The additional weight of this first
prototype version is due to i) the adjustable geometry and associated heavier
hardware, ii) the flanged and bolted heavy duty ducting, and iii) the heavier
weight materials for test development durability considerations.

Task 2 - Fabrication and Procurement of Turbochargers and Ancillary Equipment

Based upon the results of Task 1 above, TMS will fabricate or procure the hardware for two complete turbocharger sets (3 stages each) with an additional set of critical spare parts (impellers, rotors, bearings, etc.).

TMS presently has the tooling to manufacture all three compressor impellers. It is anticipated that the turbine rotors will be rotors from existing turbochargers (third stage from the Schwitzer 4LE303, second stage from the AiResearch T18A40, and the first stage from the VAT) with slight modifications. TMS utilizes several local machine shops to fabricate/modify turbocharger components. The turbocharger housings will be fabricated using sheet metal and all components will be designed with weight and reliability as critical design criteria. Other turbocharger system components (controls, ducting, bearings) will be fabricated or procured as appropriate.

Task 3 - Test Program Preparation

The detailed test plan and test data computational procedures will be formulated for testing the complete turbocharger and engine system.

Task 4 - Test Facility Preparation

Turbocharger Test Facilities

Initial turbocharger testing will first be performed in the TMS blockhouse test facility. This will permit developmental testing of individual turbocharger stages under steady flow conditions necessary for generating accurate compressor impeller performance maps. This facility will be modified as necessary to accommodate the turbochargers developed in the previous tasks. The turbocharger will be mounted on a test bench and monitored by operators at a console outside the blockhouse via an observation window. All instrumentation readouts will be located in instrumentation panels at the console location.

Turbine drive air will be supplied by two series-connected centrifugal compressors driven by an Allison aircraft engine located just outside the lab facility. The pressurized air will be ducted through the blockhouse wall to a J-33 jet combustor which can add additional energy to the air if required. This configuration can supply six pounds of turbine drive air per second at 60 psia and up to 1500°F. Air pressure will be controlled primarily by varying the speed of the Allison engine. Turbine exhaust air will be vented unthrottled to ambient through a muffler.

Figure 3 shows a typical turbocharger installation on the TMS test cart. The moveable test cart incorporates an oil tank, oil pump, oil coolers and an oil safety system. Air drawn into the compressor is metered by a venturi connected to a 60 inch vertical water manometer. Compressor pressure ratio is controlled by reducing inlet pressure with a remotely-controlled, electrically-operated butterfly valve while exhausting compressor air to ambient pressure.

Propulsion System Test Facilities

3

Layout. Figure 4 presents a very simplified schematic of the TMS high altitude propulsion system test facility which will be used in this program. This facility will be modified as necessary to accommodate the propulsion system developed in this program. The altitude chamber encompasses the engine, turbochargers, dynomometer and the sensing portions of the instrumentation. The functions external to the chamber are the display and recording instrumentation, the safety monitors, and the environment generation and control.

as shown diagrammatically by Figure 5. The tank (2) is mounted on tracked wheels and attached to a tooling plate with quick release toggles so that it can be quickly rolled away from the enclosed test components (i.e. engine, turbos) which remain supported by the heavy tooling plate. This provides easy access to those components without requiring disconnection of the many plubming or electrical connections which pass through the tooling plate.

Air enters the system through the expander (1) located at the front of the tank (2), first passing through a throttling valve which controls tank pressure, and then through the expander wheel which provides the required temperature drop. From the expander, the cold, low pressure air enters the tank and is ducted to the turbocharger compressors, passes through the engine, the turbocharger turbines and exits the tank through the exhaust duct (3). To allow for thermal expansion, the duct takes an upward angle after leaving the tank and forms an expansion loop as it curves back down to the exhaust precooler inlet (4). Leaving the precooler, the exhaust passes through a throttling valve (5) before entering the first Roots blower (6). From the blower exit it flows to the intercooler (7) prior to entering the second Roots blower (8). Leaving that blower it goes through intercooler (9) and then to four rotary piston pumps (10) before being exhausted to ambient through a ventilation duct (11). The exhaust

precooler and the intercoolers are all water-cooled as are the pumps and blowers. Two of the water-cooled turbo intercoolers, (12) and (13), are located immediately adjacent to the tank to reduce pressure losses. The first turbo intercooler (14), being much larger, was placed on the floor immediately to the rear of (12) and (13).

Instrumentation. The turbocharger instrumentation will be read out on specially fabricated instrumentation consoles located just outside the vacuum chamber. The engine related parameters will be read out on the dynomometer console gages and digital displays, and will be permanently recorded on the console printer whenever a data point is taken. Figure 6 presents a copy of the permanent printout which will be provided by the Superflow dynomometer. Recorded there are:

Engine
Speed
Exhaust Temp (Each Cylinder)
Airflow Volume
Fuel Flow
Torque
Horsepower
Brake Specific Fuel Consumption
Air to Fuel Ratio

and

....

Safety System. To prevent damage to the engine, turbochargers, or vacuum system during a malfunction, a safety system will be incorporated to shutdown the engine if certain limits are exceeded.

Previous experience has shown that where a safety system can be activated by any of several parameters, determining the deviant parameter can be difficult if the system does not include an over limit call out. Therefore, the present system will include an over limit indicator light for each monitored parameter.

The following parameters will be monitored by the safety system:

Engine
Speed
Coolant Level
Coolant Temp (out)
Crankcase Pressure
Oil Temp Out (engine sump)
Oil Pressure (includes turbo oil pressure)
Oil Tank Level

Turbochargers
Speed
Oil Out Temp
Bearing Temp
Turbine Inlet Temp, 3rd Stage Only

Dyno Cooling Water Out

Figure 7 presents a photograph of the TMS high altitude vacuum chamber closed on the tooling plate, while Figure 8 presents a photograph of the high altitude test facility instrumentation consoles.

Task 5 - Testing and Development of Turbocharger and Engine System

TMS will provide the personnel, facilities and the equipment necessary for complete development and endurance testing of the turbocharger and engine system. A description of the proposed turbocharger and engine test facility, and its operation, has been given in the previous section. This facility will have all the necessary controls, instrumentation, and data taking capability to completely define the turbocharger and engine system performance. During this testing, hardware design changes necessary to accomplish performance goals will be made and development testing repeated as necessary.

Task 6 - Reporting

During conduct of this program reporting will be accomplished by telephone conversations, personal visits/discussions, and monthly letter progress reports to (1) relate the program status in general and (2) point out any specific factors that may affect the program plan or otherwise be of immediate interest. This arrangement will provide the opportunity to review

information acquired during the program in a timely fashion and to suggest changes in program direction, if desired. A detailed Final Report will be submitted at the end of the program documenting all efforts, results, conclusions, and recommendations.

4.0 ESTIMATED PROGRAM TIME AND COSTS

Figure 9 presents the proposed task and time schedule with major milestones for this program. As indicated there, the major program milestones are:

End of 5th month - Analysis, configuration and design of complete

turbocharger system completed

End of 6th month - Test Program Plan completed

End of 9th month Turbocharger System Fabrication completed

Test Facility Preparation completed

End of 11th month- Turbocharger System Development completed

(Bench Test)

End of 17th month- Engine/Turbocharger System Development completed

(Including redesign, retest)

End of 18th month- Detailed Final Report submitted

It is estimated that this program can be completed in seventeen months, with the Final Report being submitted at the end of the eighteenth month.

					•					;			
POSITION		0		2	3	4	5	9	7	9.	Ь	0	=
TEMPERATURE ("R)	(°R)	392	552	545	752	545	752	545	2110	2060	1805	1551	1363
PRESSURE ("	("H,a)	1.322	3.19	3,19	7.68	7.37	17.76	17.0	8.53	8.53	4.72	2.40	1.322
				,				$\Delta P_c =$	8.5"Hga	•	<i>L</i>	308	
											7	/ westegate	gata
	←		9				6		@			7	
T'S	AGE AGE			STAGE	و و و و و)	STAGE	/				
-23			-	T T		````]	Q=6.2 Btu	RR RR		0=6.2 Btu	Btu	7	$\overline{\mathcal{T}}$
	-	,				2 ND				3 5	· ·	_	Ž
3	ASE.	(O)		2 200	Single (3)		ER	STAGE	9/	COOLER	ا ہم ،) (
(O)	•	÷		(2)				4	٠		9		\rightarrow
										7/v= .9	44	<u>기</u> >	\Box
	F	TURBOCHARGER	ļ	SPECIFICATIONS	TIONS			ì	FU	FIXED PARAMETERS	IRAMET	ERS	
STAGE	Ì				2		3	၁	CYCLE FLOW RATE	W RATE			.124
TURBO SPEED		RPM	42903		59141	6	98550		INTERCOOLER AP.	LER A		\ .°	4
COMPR PRESSURE RATIO	RATIO		2.41		2.41	2	2.41	Ξ	INTER COOLER OUTLET TEMP	DUTLET	1		545
COMPR EFFICIENCY					7075		ı	12	TURBO BEARING LOSSES	RING LO	1	\ \c	5
TURBINE EFFICIENCY	>				.7075				ENGINE EXHAUST TEMP	AUST TE	A D	+-	2110
SHAFT HP			7.0	50	0.6	6	0.6		F/A	PATIO		-	90
										-			-

i

Propulsion System Operating Parameters at maximum power conditions (70 BHP and 4000 RPM at 70,000 ft altitude) FIGURE 1:

System Operating Parameters at minimum power conditions Propulsion System Operating Parameters at (15 BHP and 2000 RPM at 70,000 ft altitude) FIGURE 2:

7

1

Figure 3: Photograph of the turbocharger on the turbo test stand. B2-25

Figure 4: Simplified schematic of TMS high altitude test facility.

7. 15

Figure 5: TMS High Altitude Test Facility Layout

DIGINE IMMANUMETER TEST ON SUPERFLOW SF-896

DATE:			_TEST	NO			.
ENCINE	<u> </u>		<u></u>			•	
TEST :	remover.	TOTIO	r\ :				1
IESI .	LECUN	11 110	·				•
			-			-	
		•	TEST I	KTA			
rem	Ţ	HF' F	A FE	A1	A2 A	VF FS	FC
L A	}—FT Й	ū L	A FR RS/AR 0 0 0 0 0 0	SCF Ř	m Ø e	LB/F . Ø Ø.	FHR 00
ě	ğ	ğ i	è	Ř	ġ ġ	. Ø Ø.	M.
U Ü	Ŕ	Ř (e e	ei Ei	8 6		(14) (14)
Ř	ē	Ģ (Ū Ū	Ñ	ė ė	. Ø Ø.	<u>Fri</u>
		EXH4J	et tem	FETAT	UFC.		
CYL1	CYL2	CYL3	CYL4 C	YL5 (CYLE (YL7 [YLE
136	120	134	72	72	72	72	72
136 136	128 128	135 135	72 72	72 72	72 72	72 72	72
136	128	13%	72	72	72 ^	72	72
136 136	120 120	136 136	72 72	72 72	72 72	72 72	72

Figure 6: Copy of permanent data printout which will be provided by Superflow Dynomometer Console.

Figure 8: Photograph of high altitude test facility instrumentation console.

* FIGURE 9: Proposed Task and Time Schedule with Major Milestones (

ဖ

TASK

Heat Exchanger Design

The charge air intercooler is to have two sections. The aft section accepts 2^{NP} stage discharge air at $292^{\circ}F$ and removes 372 BTU/min from that stream to provide 3^{RP} stage inlet air at $85^{\circ}F$. The forward section accepts 3^{RP} stage discharge air at $292^{\circ}F$ and removes 372 BTU/min to deliver inlet manifold air at $85^{\circ}F$.

The heat exchanger is of counter-flow configuration with cooling air flowing the entire length from front to rear in designated tubes. The hot charge air streams flow forward in interstitial tubes which are manifolded together at the ends of their respective sections.

The tubes are to be constructed of graphite/polyamid material and would have a heregonal cross section, one-half inch on a side. This design allows the tubes to be nested together so that every "hot" tube is completely surrounded by "cold" tubes in solid contact with all of its sides. (as detailed in Appended Sketch). In the final analysis this comes to 160 hot tubes and 320 cold tubes.

Note that if a conventional aluminum gas-to-gas heat exchanger was scaled up to provide adequate surface area on the atmosphere side of the fins, the assembly would be unacceptably heavy. The proposed design is fabricated from graphite/polyamid sheet.

The intercooler performance would benefit from using the energy of the air downstream of the propeller to overcome the the pumping work of the heat exchanger. Whilst the propeller parameters are not fully known at this time, a cooler intake velocity of 170 ft/sec. at rated power has been assumed.

The resulting assembly of both cooler stages weighs from 65 to 75 lbs. and is intended to be an independently-mounted unit with an overall length of 10 feet.

THUNDER ENGINES INC.

Weight beakdown of flight-weight in-line 4 (yl.

CYLINDER BLOCK, WITH LINERS.	47-5 16.
MAIN BEARING FRAME.	10.5
CRANKSHAPT	27.0
RODS. & PISTONS	9.6
CYLINDER HEAD WITH VALVES	21.0
CAMSHAFT & DRIVE	9. 1
OIL PUMP & DRIVE	8 · <i>4</i>
WATER PUMP & DRIVE	5.0
INLET MANIFOLD	4.0 12·6
IGNITION (8 COILS)	15.4.7 lbs.

For	V-6 Configuration.			Difference
	BLOCK		38 lbs.	- 9.5 - 3.5
	MAIN BRGS. CRANKSHAFT		24	-3.0
	RODS & PISTONIS	2	12·5 16 lbs.	+ 2·9 +9·0
	2 HEADS IGNITION (12 COILS)	ω	18.9 lhs.	+ 6.3

Nett Difference + 2.2 V-6 TOTAL 156.9 165. for V-6

APPENDIX C

TM DEVELOPMENT, INC.

I.L.C. REPORT INSERT

PROPELLER DESCRIPTION

Functions Provided

The propeller subsystem is designed to perform the dual functions of propulsion and control

Aerodynamic Configuration

The propeller is to be configured primarily for high propulsive efficiency in the low-speed environment. Airfoil selection, blade planform taper and twist are selected for this efficiency requirement, since the chosen methods of manufacture provide total design freedom of aerodynamic shape factors.

Control Functions

The control function is achieved by a gimballing action of the hub permitting $a \pm 25^{\circ}$ tilt of the rotational plane and thrust vector in both vertical and horizontal directions.

This feature gives the capability of applying powerful pitching and yawing moments to the vehicle whether it is at rest or underway.

In addition, the propeller is designed with the capability of negative pitch settings, thru beta control, which will allow reverse thrust maneuvering.

Structural Features

Because of the extremely light propeller weight required, the construction will be primarily of composite materials with a minimum of fasteners and fittings made of metal.

Primary blade and hub structures will utilize Kevlar-epoxy prepreg laminating materials and honeycomb sandwich techniques.

Figures 1 thru 4 show some of the specific structural properties of Kevlar laminates as compared with the conventional lightweight materials, aluminum alloy and titanium.

An additional weight advantage of designing the propeller in Kevlar material is that the usual gage-thickness limitations of sheet metal are eliminated. Serviceable sandwich facings of .008 inch or even down to .004 are practical.

Where localized exceptional stiffness/strength is required in the blade or hub, graphite fibers will be used.

TM DEVELOPMENT, INC.

I.L.C. REPORT INSERT - PAGE 2

Fatigue and Fail-Safe Features

The laboratory and operational experience with well-designed fiberglass and Kevlar laminate structures has demonstrated their exceptional tolerance to conditions which are often fatal to metal structures. Corrosion, accidental scratches or other "notch" damage and minor manufacturing defects are all critical to lightweight metal structures but generally have no adverse effect on the composite structures proposed for this propeller.

Multiply-redundant load paths are designed into the propeller structural and materials configuration, giving a highly mission-reliable subsystem with a negligible maintenance burden.

Propeller Structural Dynamics

This very lightweight and flexible propeller and vehicle mounting must be designed and analyzed for dynamic stability.

Some items for analytical consideration include:

Propeller rotating natural frequencies and resonance points.

Aeroelastic behaviour, such as flutter and divergence.

Propeller mounting stiffness related to whirl mode phenomena.

A three blade propeller configuration is planned, which will provide for good aerodynamic efficiency and minimal vibration tendencies.

Special propeller design features are planned which will allow a minimum weight propeller by virtue of structural simplicity and absolute minimal steady and vibratory loadings. These design features will also tend to minimize any vibrations transmitted to the flight vehicle

High Altitude Tolerance

Special design attention will be given to high altitude functioning of the propeller. This will include:

Low temperature dimensional behaviour of structural and mechanical elements, such as bearings.

Atmospheric pressure cycling and appropriate venting of hollow compartments.

Lubrication requirements for trouble-free operation of pitch change mechanisms.

Change in structural properties of materials at low temperatures.

FIGURE 1

APPENDIX D

17.

COMMAND AND TELEMETRY SUBSYSTEM FOR A LINE-OF-SIGHT AIR SHIP CONTROL LINK

Presented to ICL Industries 31 August 1982

Prepared by J. Hall
T. G. Hall

1.0 INTRODUCTION

Motorola is pleased to submit this response to ILC Industries for an air-to-ground telemetry link and a ground-to-air command link. The communication links are part of an air ship system concept study for NASA Wallops Flight Center under Contract Number NAS-6-3131.

This response contains a technical description of both terminals and ROM size, weight and power estimates for the air ship terminal.

2.0 <u>SYSTEM DESCRIPTION</u>

The functional block diagram for the communication subsystems is shown in Figure 1. The air ship is located overhead at a line-of-sight range of approximately 70,000 feet. Approximately 100 sensor outputs are telemetered down to a microprocessor, which displays air ship status to a pilot and encodes the pilot's responses for transmission to the air ship control junctions.

The following sections develop the communication requirements and discuss the hardware approach. Section 2.1 develops the data rates. Section 2.2 presents the link analysis and the transmit power and receiver sensitivity requirements. Section 2.3 describes the telemetry system and Section 2.4 describes the command system. Section 3.0 contains the size, weight and power estimates.

2.1 <u>DATA RATE REQUIREMENTS</u>

2.1.1 <u>Telemetry</u> (Down Link)

The telemetry data consists of 100 analog voltages from air ship sensors. The time constant associated with each sensor is on the order of 30 seconds; therefore, the 20 dB information bandwidth is less than 0.05 Hz and a sample of 1 in 10 seconds is adequate. The telemetry encoder will sequentially select each sensor output, quantize the voltage to a precision of 8 bits and insert the digital data into the telemetry format. The data rate, without format overhead, is 80 bits per second (100 sensors x 8 bits/sample x 0.1 sample/second). Since

Functional Block Diagram of the Telemetry and Control System Figure 1.

the bit rate is so low, a Manchester code can be used with essentially no penalty and will simplify the telemetry frame synchronization. This code encodes a binary ONE as the symbol pair 01 and encodes a binary ZERO as the symbol pair 10. The symbol pairs 11 and 00 do not appear in the data stream and can be used for unambiguous telemetry frame synchronization. Eight bit words are encoded into 16 symbols; therefore, a 16-symbol sequence of eight ONE symbols followed by eight ZERO symbols is selected for frame synchronization. Frame synchronization is guaranteed at the first complete telemetry frame received. The Manchester encoding plus the frame sync data will raise the telemetry data rate to 176 bps.

2.1.2 Command (Up Link)

There are 6-8 commandable functions for the up link with time constants on the order of 30 seconds during station-keying and 5 seconds during ascent and descent. Assuming 8-bit precision, the maximum data rate is 8 functions \times 8 bits/function \div 5 seconds/function a 64 bps. Again, Manchester encoding with a 16-symbol frame sync word only increases the data rate to 144 bps and provides rapid and positive synchronization.

2.2 LINK ANALYSIS

The data rates for these links are low and the communication range is short. Therefore, there is considerable flexibility in selecting antenna gains, transmitted power levels and receiver sensitivities. The criteria used in selecting these parameters was to provide large margin to preclude loss of an air ship due to marginal communications and to simplify air ship hardware. These factors led to the selection of non-coherent frequency shift key (FSK) modulation with a transmitter power of 0.1 watts and a receiver noise figure of 10 dB. The air ship antenna gains are specified at -10dBi and the ground terminal antennas are specified at +6 dBi. These parameters provide a BER of less than 1×10^{-7} and the system margin exceeds 26 dB.

Additional margin for the command link can be provided at low cost by increasing the ground transmitter to a watt.

3.0 MECHANICAL

KK SE KE

31. AIR SHIP TERMINAL

The air ship terminal is composed of the telemetry encoder-transmitter and the command receiver-decoder. Since a command link failure will compromise air ship safety, two command receiver-decoders and two telemetry encoder transmitters are proposed for 100 percent redundancy of major control functions. Table 1 presents the size, weight and power budgets for a single system .

Table 1. Size, Weight and Power Estimate for the Air Ship Telemetry

Function	Volume (in ³)	Power. (Watts)	Weight (1bs)
TLM Encoder	27	2.0	1.4
TCM XMTR/CMD REC/ANT.	767	30.0	24.0
CMD Decoder/μP	24	2.3	1.2
Housing/Thermal Control		5.0	2.0
Totals	818	39.3	28.6

Therefore, two complete sets of electronics will be less than 60 pounds and will require less than 40 watts, depending on whether all redundant units are powered simultaneously. The unit will be enclosed with an insulating material for thermal control.

3.2 GROUND TERMINAL

The ground terminal will be housed in a standard relay rack and will use commercial power supplies. Since size, weight and power are not significant parameters, no estimates for these parameters have been prepared.